7.4.2 对88规范中规定的计算倾覆点,针对l1≥2.2hb 时的两个公式,经分析采用近似公式(x0=0.3hb),和弹性地基梁公式()相比,当hb=250mm~500mm时,μ=1.051,δ=0.064;并对挑梁下设有构造柱时的计算倾覆点位置作了规定(取0.5x0)。

7.3.1 本条较原规范的规定更为明确。

7.3.2 墙梁构造限值尺寸,是墙梁构件结构安全的重要保证,本条规定墙梁设计应满足的条件。关于墙体总高度、墙梁跨度的规定,主要根据工程经验。hw/l0i≥0.4(1/3)的规定是为了避免墙体发生斜拉破坏。托梁是墙梁的关键构件。限制hb/l0i不致过小不仅从承载力力方面考虑,而且较大的托梁刚度对改善墙体抗剪性能和托梁支座上部砌体局部受压性能也是有利的,对承重墙梁改为hb/l0i≥1/10。但随着hb/l0i的增大。竖向荷载向跨中分布,而不是向支座集聚,不利于组合作用充分发挥,因此,不应采用过大的hb/l0i。洞宽和洞高限制是为了保证墙体整体性并根据试验情况作出的。偏开洞口对墙梁组合作用发挥是极不利的,洞口外墙肢过小,极易剪坏或被推出破坏,限制洞距ai及采取相应构造措施非常重要。对边支座为ai≥0.15l0i;增加中支座ai≥0.07l0i的规定。此外,国内、外均进行过混凝土砌块砌体和轻质混凝土砌块砌体墙梁试验,表明其受力性能与砖砌体墙梁相似。故采用混凝土砌块砌体墙梁可参照使用。而大开间墙梁模型拟动力试验和深梁试验表明,对称开两个洞的墙梁和偏开一个洞的墙梁受力性能类似。对多层房屋的纵向连续墙梁每跨对称开两个窗洞时也可参照使用。
    本次修订主要作了以下修改:
    1)近几年来,混凝土普通砖砌体、混凝土多孔砖砌体和混凝土砌块砌体在工程中有较多应用,故增加了由这三种砌体组成的墙梁。
    2)对于多层房屋的墙梁,要求洞口设置在相同位置并上、下对齐,工程中很难做到,故取消了此规定。

7.3.3 本条给出与第7.3.1条相应的计算简图。计算跨度取值系根据墙梁为组合深梁,其支座应力分布比较均匀而确定的。墙体计算高度仅取一层层高是偏于安全的,分析表明,当hw>l0时,主要是hw=l0范围内的墙体参与组合作用。H0取值基于轴拉力作用于托梁中心,hf限值系根据试验和弹性分析并偏于安全确定的。

7.3.4 本条分别给出使用阶段和施工阶段的计算荷载取值。承重墙梁在托梁顶面荷载作用下不考虑组合作用,仅在墙梁顶面荷载作用下考虑组合作用。有限元分析及2个两层带翼墙的墙梁试验表明,当bf/l0=0.13~0.3时,在墙梁顶面已有30%~50%上部楼面荷载传至翼墙。墙梁支座处的落地混凝土构造柱同样可以分担35%~65%的楼面荷载。但本条不再考虑上部楼面荷载的折减,仅在墙体受剪和局压计算中考虑翼墙的有利作用,以提高墙梁的可靠度,并简化计算。1~3跨7层框支墙梁的有限元分析表明,墙梁顶面以上各层集中力可按作用的跨度近似化为均布荷载(一般不超过该层该跨荷载的30%),再按本节方法计算墙梁承载力是安全可靠的。

7.3.5 试验表明,墙梁在顶面荷载作用下主要发生三种破坏形态,即:由于跨中或洞口边缘处纵向钢筋屈服,以及由于支座上部纵向钢筋屈服而产生的正截面破坏;墙体或托梁斜截面剪切破坏以及托梁支座上部砌体局部受压破坏。为保证墙梁安全可靠地工作,必须进行本条规定的各项承载力计算。计算分析表明,自承重墙梁可满足墙体受剪承载力和砌体局部受压承载力的要求,无需验算。

7.3. 6 试验和有限元分析表明,在墙梁顶面荷载作用下,无洞口简支墙梁正截面破坏发生在跨中截面,托梁处于小偏心受拉状态;有洞口简支墙梁正截面破坏发生在洞口内边缘截面,托梁处于大偏心受拉状态。原规范基于试验结果给出考虑墙梁组合作用,托梁按混凝土偏心受拉构件计算的设计方法及相应公式。其中,内力臂系数γ基于56个无洞口墙梁试验,采用与混凝土深梁类似的形式,γ=0.1(4.5+l0/H0),计算值与试验值比值的平均值μ=0.885,变异系数δ=0.176,具有一定的安全储备,但方法过于繁琐。本规范在无洞口和有洞口简支墙梁有限元分析的基础上,直接给出托梁弯矩和轴力计算公式。既保持考虑墙梁组合作用,托梁按混凝土偏心受拉构件设计的合理模式,又简化了计算,并提高了可靠度。托梁弯矩系数αM计算值与有限元值之比;对无洞口墙梁μ=1.644,δ=0.101;对有洞口墙梁μ=2.705,δ=0.381托梁轴力系数ηN计算值与有限元值之比,μ=1.146,δ=0.023;对有洞口墙梁,μ=1.153,δ=0.262,对于直接作用在托梁顶面的荷载Q1、F1将由托梁单独承受而不考虑墙梁组合作用,这是偏于安全的。
    连续墙梁是在21个连续墙梁试验基础上,根据2跨、3跨、4跨和5跨等跨无洞口和有洞口连续墙梁有限元分析提出的。对于跨中截面,直接给出托梁弯矩和轴拉力计算公式,按混凝土偏心受拉构件设计,与简支墙梁托梁的计算模式一致。对于支座截面,有限元分析表明其为大偏心受压构件,忽略轴压力按受弯构计算是偏于安全的。弯矩系数αM是考虑各种因素在通常工程应用的范围变化并取最大值,其安全储备足较大的。在托梁顶面荷载Q1、F1作用下,以及在墙梁顶面荷载Q2作用下均采用一般结构力学方法分析连续托梁内力,计算较简便。
    单跨框支墙梁是在9个单跨框支墙梁试验基础上,根据单跨无洞口和有洞口框支墙梁限元分析,对托梁跨中截面直接给出弯距和轴拉力公式,并按混凝土偏心受拉构件计算,也与简支墙梁托梁计算模式一致。框支墙梁在托梁顶面荷载q1,F1和墙梁顶面荷载q2作用下分别采用一般结构力学方法分析框架内力,计算较简便。本规范在19个双跨框支墙梁试验基础上。根据2跨、3跨和4跨无洞口和有洞口框支墙梁有限元分析,对托梁跨中截面也直接给出弯矩和轴拉力按混凝土偏心受拉构件计算,与单跨框支墙梁协调一致。托梁支座截面也按受弯构件计算。
    为简化计算,连续墙梁和框支墙梁采用统一的αM和ηN表达式。边跨跨中αM计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.251,δ=0.095,有洞口时,μ=1.302,δ=0.198;对框支墙梁,无洞口时,μ=2.1,δ=0.182,有洞口时,μ=1.615,δ=0.252。ηN计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.129,δ=0.039,有洞口时,μ=1.269,δ=0.181;对框支墙梁,无洞口时,μ=1.047,δ=0.181,有洞口时,μ=0.997,δ=0.135。中支座αM计算值与有限元值之比,对连续墙梁,无洞口时,μ=1.715,δ=0.245,有洞口时,μ=1.826,δ=0.332;对框支墙梁,无洞口时,μ=2.017,δ=0.251。有洞口时,μ=1.844,δ=0.295。

7.3.7 有限元分析表明,多跨框支墙梁存在边柱之间的大拱效应,使边柱轴压力增大,中柱轴压力减少,故在墙梁顶面荷载Q2作用下当边柱轴压力增大不利时应乘以1.2的修正系数。框架柱的弯矩计算不考虑墙梁组合作用。

7.3.8 试验表明,墙梁发生剪切破坏时,一般情况下墙体先于托梁进入极限状态而剪坏。当托梁混凝土强度较低,箍筋较少时,或墙体采用构造框架约束砌体的情况下托梁可能稍后剪坏。故托梁与墙体应分别计算受剪承载力。本规范规定托梁受剪承载力统一按受弯构件计算。剪力系数βV按不同情况取值且有较大提高。因而提高了可靠度,且简化了计算。简支墙梁βV计算值与有限元值之比,对无洞口墙梁μ=1.102,δ=0.078;对有洞口墙梁μ=1.397,δ=0.123。βV计算值与有限元值之比,对连续墙梁边支座,无洞口时μ=1.254、δ=0.135,有洞口时μ=1.404、δ=0.159;中支座,无洞口时μ=1.094、δ=0.062,有洞口时μ=1.098、δ=0.162。对框支墙梁边支座,无洞口时μ=1.693,δ=0.131,有洞口时μ=2.011,δ=0.31;中支座,无洞口时μ=1.588、δ=0.093,有洞口时μ=1.659、δ=0.187。

7.3.9 试验表明:墙梁的墙体剪切破坏发生于hw/l0<0.75~0.80,托梁较强,砌体相对较弱的情况下。当hw/l0<0.35~0.40时发生承载力较低的斜拉破坏,否则,将发生斜压破坏。原规范根据砌体在复合应力状态下的剪切强度。经理论分析得出墙体受剪承载力公式并进行试验验证。并按正交设计方法找出影响显著的因素hb/l0和α/l0;根据试验资料回归分析,给出V2≤ξ2(0.2+hb/l0)hhwf。计算值与47个简支无洞口墙梁试验结果比较,μ=1.062,δ=0.141;与33个简支有洞口墙梁试验结果比较,μ=0.966,δ=0.155。工程实践表明,由于此式给出的承载力较低,往往成为墙梁设计中的控制指标。试验表明,墙梁顶面圈梁(称为顶梁)如同放在砌体上的弹性地基梁,能将楼层荷载部分传至支座,并和托梁一起约束墙体横向变形,延缓和阻滞斜裂缝开展,提高墙体受剪承载力。本规范根据7个设置顶梁的连续墙梁剪切破坏试验结果,给出考虑顶梁作用的墙体受剪承载力公式(7.3.9),计算值与试验值之比,μ=0.844,δ=0.084。工程实践表明,墙梁顶面以上集中荷载占各层荷载比值不大,且经各层传递至墙梁顶面已趋均匀,故将墙梁顶面以上各层集中荷载均除以跨度近似化为均布荷载计算。由于翼墙或构造柱的存在,使多层墙梁楼盖荷载向翼墙或构造柱卸荷而减少墙体剪力,改善墙体受剪性能,故采用翼墙影响系数ξ1。为了简化计算,单层墙梁洞口影响系数ξ2不再采用公式表达,与多层墙梁一样给出定值。

7.3.10 试验表明,当hw/l0>0.75~0.80,且无翼墙,砌体强度较低时,易发生托梁支座上方因竖向正应力集中而引起的砌体局部受压破坏。为保证砌体局部受压承载力,应满足σymaxh≤γfh(σymax为最大竖向压应力,γ为局压强度提高系数)。令C=σymaxh/Q2称为应力集中系数,则上式变为Q2≤γfh/C。令ξ=γ/C,称为局压系数,即得到(7.3.10—1)式。根据16个发生局压破坏的无翼墙墙梁试验结果,ξ=0.31~0.414;若取γ=1.5,C=4,则ξ=0.37。翼墙的存在,使应力集中减少,局部受压有较大改善;当bf/h=2~5时,C=1.33~2.38,ξ=0.475~0.747。则根据试验结果确定(7.3.10—2)式。近年来采用构造框架约束砌体的墙梁试验和有限元分析表明,构造柱对减少应力集中,改善局部受压的作用更明显,应力集中系数可降至1.6左右。计算分析表明,当bf/h≥5或设构造柱时,可不验算砌体局部受压承载力。

7.3.11 墙梁是在托梁上砌筑砌体墙形成的。除应限制计算高度范围内墙体每天的可砌高度。严格进行施工质量控制外,尚应进行托梁在施工荷载作用下的承载力验算,以确保施工安全。

7.3.12 为保证托梁与上部墙体共同工作,保证墙梁组合作用的正常发挥,本条对墙梁基本构造要求作了相应的规定。
    本次修订,增加了托梁上部通长布置的纵向钢筋面积与跨中下部纵向钢筋面积之比值不应小于0.4的规定。

7.2.1 本条强调过梁宜采用钢筋混凝土过梁。

7.2.3 砌有一定高度墙体的钢筋混凝土过梁按受弯构件计算严格说是不合理的。试验表明过梁也是偏拉构件。过梁与墙梁并无明确分界定义,主要差别在于过梁支承于平行的墙体上,且支承长度较长;一般跨度较小,承受的梁板荷载较小。当过梁跨度较大或承受较大梁板荷载时,应按墙梁设计。

7.1.2、7.1.3 该两条所表述的圈梁设置涉及砌体结构的安全,故将其定为强制性条文。根据近年来工程反馈信息和住房商品化对房屋质量要求的不断提高,加强了多层砌体房屋圈梁的设置和构造。这有助于提高砌体房屋的整体性、抗震和抗倒塌能力。

7.1.6 由于预制混凝土楼、屋盖普遍存在裂缝,许多地区采用了现浇混凝土楼板,为此提出了本条的规定。

6.5.1 为防止墙体房屋因长度过大由于温差和砌体干缩引起墙体产生竖向整体裂缝,规定了伸缩缝的最大间距。考虑到石砌体、灰砂砖和混凝土砌块与砌体材料性能的差异,根据国内外有关资料和工程实践经验对上述砌体伸缩缝的最大间距予以折减。
    按表6.5. 1设置的墙体伸缩缝,一般不能同时防止由于钢筋混凝土屋盖的温度变形和砌体干缩变形引起的墙体局部裂缝。

6.5.2
    1 屋面设置保温、隔热层的规定不仅适用与设计,也适用于施工阶段,调查发现,一些砌体结构工程的混凝土屋面由于未对板材采取应有的防晒(冻)措施,混凝土构件在裸露环境下所产生的温度应力将顶层墙体拉裂现象,故也应对施工期的混凝土屋盖应采取临时的保温、隔热措施。
    2~8 为了防止和减轻由于钢筋混凝土屋盖的温度变化和砌体干缩变形以及其他原因引起的墙体裂缝,本次修编将国内外比较成熟的一些措施列出,使用者可根据自己的具体情况选用。
    对顶层墙体施加预应力的具体方法和构造措施如下:
    ①在顶层端开间纵墙墙体布置后张无粘结预应力钢筋,预应力钢筋可采用热轧HRB400钢筋,间距宜为400mm~600mm,直径宜为16mm~18mm,预应力钢筋的张拉控制应力宜为0.50~0.65fyk,在墙体内产生0.35MPa~0.55MPa的有效压应力,预应力总损失可取25%;
    ②采用后张法施加预应力,预应力钢筋可采用扭矩扳手或液压千斤顶张拉,扭矩扳手使用前需进行标定,施加预应力时,砌体抗压强度及混凝土立方体抗压强度不宜低于设计值的80%;
    ③预应力钢筋下端(固定端)可以锚固于下层楼面圈梁内,锚固长度不宜小于30d,预应力钢筋上端(张拉端)可采用螺丝端杆锚具锚固于屋面圈梁上,屋面圈梁应进行局部承压验算;
    ④预应力钢筋应采取可靠的防锈措施,可直接在钢筋表面涂刷防腐涂料、包缠防腐材料等措施。
    防止墙体裂缝的措施尚在不断总结和深化,故不限于所列方法。当有实践经验时,也可采用其他措施。

6. 5.4 本条原是考虑到蒸压灰砂砖、混凝土砌块和其他非烧结砖砌体的干缩变形较大,当实体墙长超过5m时,往往在墙体中部出现两端小、中间大的竖向收缩裂缝,为防止或减轻这类裂缝的出现,而提出的一条措施。该项措施也适合于其他墙体材料设计时参考使用,因此此次修编,去掉了墙体材料的限制。

6.5.5 本条原是根据混凝土砌块房屋在这些部位易出现裂缝,并参照一些工程设计经验和标通图,提出的有关措施。该项措施也可供其他墙体材料设计时参考使用,因此此次修编,去掉了混凝土砌块房屋的限制。

6.5.6 由于填充墙与框架柱、梁的缝隙采用了聚苯乙烯泡沫塑料板条或聚氨酯发泡材料充填,且用硅酮胶或其他弹性密封材料封缝,为防止该部位裂缝的显现,亦采用耐久、耐看的缝隙装饰条进行建筑构造处理。

6.5.7 关于控制缝的概念主要引自欧、美规范和工程实践。它主要针对高收缩率砌体材料。如非烧结砖和混凝土砌块,其干缩率为0.2mm/m~0.4mm/m,是烧结砖的2~3倍。因此按对待烧结砖砌体结构的温度区段和抗裂措施是远远不够的。在本规范6.2节的不少条的措施是针对这个问题的,亦显然是不完备的。按照欧美规范,如英国规范规定,对黏土砖砌体的控制间距为10m~15m,对混凝土砌块和硅酸盐砖(本规范指的是蒸压灰砂砖、粉煤灰砖等)砌体一般不应大于6m;美国混凝土协会(ACI)规定,无筋砌体的最大控制缝间距为12m~18m,配筋砌体的控制缝不超过30m。这远远超过我国砌体规范温度区段的间距。这也是按本规范的温度区段和有关抗裂构造措施不能消除在砌体房屋中裂缝的一个重要原因。控制缝是根据砌体材料的干缩特性,把较长的砌体房屋的墙体划分成若干个较小的区段,使砌体因温度、干缩变形引起的应力或裂缝很小,而达到可以控制的地步,故称控制缝(control joint)。控制缝为单墙设缝,不同我国普遍采用的双墙温度缝。该缝沿墙长方向能自己伸缩,而在墙体出平面则能承受一定的水平力。因此该缝材料还对防水密封有一定要求。关于在房屋纵墙上,按本条规定设缝的理论分析是这样的;房屋墙体刚度变化、高度变化均会引起变形突变,正是裂缝的多发处,而在这些位置设置控制缝就解决了这个问题,但随之提出的问题是,留控制缝后对砌体房屋的整体刚度有何影响,特别是对房屋的抗震影响如何,是个值得关注的问题。哈尔滨工业大学对一般七层砌体住宅,在顶层按10m左右在纵墙的门或窗洞部位设置控制缝进行了抗震分析,其结沦是:控制缝引起的墙体刚度降低很小,至少在低烈度区,如不大于7度情况下,是安全可靠的。控制缝在我国因系新作法,在实施上需结合工程情况设置控制缝和适合的嵌缝材料。这方面的材料可参见《现代砌体结构—全国砌体结构学术会议论文集》(中国建筑工业出版社2000)。本条控制缝宽度取值是参照美国规范ACI 530.1—05/ASCE 6—05/TMS 602—05的规定。

6.5.8 根据夹心墙热效应及叶墙间的变形性差异(内叶墙受到外叶墙保护、内、外叶墙间变形不同)使外叶墙更易产生裂缝的特点,规定了这种墙体设置控制缝的间距。

    为适应我国建筑节能要求,作为高效节能墙体的多叶墙,即夹心墙的设计,在这次修编中,根据我国的试验并参照国外规范的有关规定新增加的一节。2001规范将“夹心墙”定名为“夹芯墙,为了与国家标准《墙体材料应用统一技术规范》GB 50574及相关标准相一致,本次修订改为夹心墙。

6.4. 1 通过必要的验证性试验,本次修订将2001规范规定的夹心墙的夹层厚度不宜大于100mm改为120mm,扩大了适用范围,也为夹心墙内设置空气间层提供了方便。

6.4.2 夹心墙的外叶墙处于环境恶劣的室外,当采用低强度的外叶墙时,易因劣化、脱落而毁物伤人。故对其块体材料的强度提出了较高的要求,本条为强制性条文,应严格执行。

6.4.5 我国的一些科研单位,如中国建筑科学研究院、哈尔滨建筑大学、湖南大学、南京工业大学等先后作了一定数量的夹心墙的静、动力试验(包括钢筋拉结和丁砖拉结等构造方案),并提出了相应的构造措施和计算方法。试验表明,在竖向荷载作用下,拉结件能协调内、外叶墙的变形,夹心墙通过拉结件为内叶墙提供了一定的支持作用,提高了内叶墙的承载力和增加了叶墙的稳定性,在往复荷载作用下,钢筋拉结件能在大变形情况下防止外叶墙失稳破坏,内外叶墙变形协调,共同工作。因此钢筋拉结件对防止已开裂墙体在地震作用下不致脱落、倒塌有重要作用。另外不同拉接方案对比试验表明,采用钢筋拉结件的夹心墙片,不仅破坏较轻,并且其变形能力和承载能力的发挥也较好。本次修订引入了国外应用较为普遍的可调拉结件,这种拉结件预埋在夹心墙内、外叶墙的灰缝内,利用可调节特性,消除内外叶墙因竖向变形不一致而产生的不利影响,宜采用。

6.4.6 叶墙的拉结件或钢筋网片采用热镀锌进行防腐处理时,其镀层厚度不应小于290g/m2。采用其他材料涂层应具有等效防腐性能。

6.3.1 本条系新增加内容。主要基于以往历次大地震,尤其是汶川地震的震害情况表明,框架(含框剪)结构填充墙等非结构构件均遭到不同程度破坏,有的损害甚至超出了主体结构,导致不必要的经济损失,尤其高级装饰条件下的高层建筑的损失更为严重。同样也曾发生过受较大水平风荷载作用而导则墙体毁坏并殃及地面建筑、行人的案例。这种现象应引起人们的广泛关注,防止或减轻该类墙体震害及强风作用的有效设计方法和构造措施已成为工程界的急需和共识。
    现行国家标准《建筑抗震设计规范》GB 50011已对属非结构构件的框架填充墙的地震作用的计算有详细规定,本规范不再列出。

6.3.3
    1 填充墙选用轻质砌体材料可减轻结构重量、降低造价、有利于结构抗震;
    2 填充墙体材料强度等级不应过低,否则,当框架稍有变形时,填充墙体就可能开裂,在意外荷载或烈度不高的地震作用时,容易遭到损坏,甚至造成人员伤亡和财产损失;
    4 目前有些企业自行研制、开发了夹心复合砌块,即两叶薄型混凝土砌块中间夹有保温层(如EPS、XPS等),并将其用于框架结构的填充墙。虽然墙的整体宽度一般均大于90mm,但每片混凝土薄块仅为30mm~40mm。由于保温夹层较软,不能对混凝土块构成有效的侧限,因此当混凝土梁(板)变形并压紧墙时,单叶墙会因高厚比过大而出现失稳崩坏,故内外叶间必须有可靠的拉结。

6.3.4 震害经验表明:嵌砌在框架和梁中间的填充墙砌体,当强度和刚度较大,在地震发生时,产生的水平地震作用力,将会顶推框架梁柱,易造成柱节点处的破坏,所以强度过高的填充墙并不完全有利于框架结构的抗震。本条规定填充墙与框架柱、梁连接处构造,可根据设计要求采用脱开或不脱开的方法。
    1 填充墙与框架柱、梁脱开是为了减小地震时填充墙对框架梁、柱的顶推作用,避免混凝土框架的损坏。本条除规定了填充墙与框架柱、梁脱开间隙的构造要求,同时为保证填充墙平面外的稳定性,规定了在填充墙两端的梁、板底及柱(墙)侧增设卡口铁件的要求。
    需指出的是,设于填充墙内的构造柱施工时,不需预留马牙槎。柱顶预留的不小于15mm的缝隙,则为了防止楼板(梁)受弯变形后对柱的挤压。
    2 本款为填充墙与框架采用不脱开的方法时的相应的作法。
    调查表明,由于混凝土柱(墙)深入填充墙的拉结钢筋断于同一截面位置,当墙体发生竖向变形时,该部位常常产生裂缝。故本次修订规定埋入填充墙内的拉结筋应错开截断。

6.2.1 本条是强制性条文,汶川地震灾害的经验表明,预制钢筋混凝土板之间有可靠连接,才能保证楼面板的整体作用,增加墙体约束,减小墙体竖向变形,避免楼板在较大位移时坍塌。
    该条是保整结构安全与房屋整体性的主要措施之一,应严格执行。

6. 2.2 工程实践表明,墙体转角处和纵横墙交接处设拉结钢筋是提高墙体稳定性和房屋整体性的重要措施之一。该项措施对防止墙体温度或干缩变形引起的开裂也有一定作用。调查发现,一些开有大(多)孔洞的块材墙体,其设于墙体灰缝内的拉结钢筋大多放到了孔洞处,严重影响了钢筋的拉结。研究表明,由于多孔砖孔洞的存在,钢筋在多孔砖砌体灰缝内的锚固承载力小于同等条件下在实心砖砌体灰缝内的锚固承载力。根据试验数据和可靠性分析,对于孔洞率不大于30%的多孔砖,墙体水平灰缝拉结筋的锚固长度应为实心砖墙体的1.4倍。为保障墙体的整体性能与安全,特制定此条文,并将其定为强制性条文。

6.2.4 在砌体中留槽及埋设管道对砌体的承载力影响较大,故本条规定了有关要求。

6.2.6 同2001规范相应条文关于梁下不同材料支承墙体时的规定。

6.2.8 对厚度小于或等于240mm的墙,当梁跨度大于或等于本条规定时,其支承处宜加设壁柱。如设壁柱后影响房间的使用功能。也可采用配筋砌体或在墙中设钢筋混凝土柱等措施对墙体予以加强。

6.2.11 本条根据工程实践将砌块墙与后砌隔墙交接处的拉结钢筋网片的构造具体化,并加密了该网片沿墙高设置的间距(400mm)。

6.2.12 为增强混凝土砌块房屋的整体性和抗裂能力和工程实践经验提出了本规定。为保证灌实质量,要求其坍落度为160mm~200mm的专用灌孔混凝土(Cb)。

6.2.13 混凝土小型砌块房屋在顶层和底层门窗洞口两边易出现裂缝,规定在顶层和底层门窗洞口两边200mm范围内的孔洞用混凝土灌实,为保证灌实质量,要求混凝土坍落度为160mm~200mm。

6.1.1 由于配筋砌体的使用越来越普遍,本次修订增加了配筋砌体的内容,因此本节也相应增加了配筋砌体高厚比的限值。由于配筋砌体的整体性比无筋砌体好,刚度较无筋砌体大,因此在无筋砌体高厚比最高限值为28的基础上作了提高,配筋砌体高厚比最高限值为30。

6.1.2 墙中设混凝土构造柱时可提高墙体使用阶段的稳定性和刚度,设混凝土构造柱墙在使用阶段的允许高厚比提高系数μc,是在对设混凝土构造柱的各种砖墙、砌块墙和石砌墙的整体稳定性和刚度进行分析后提出的偏下限公式。为与组合砖墙承载力计算相协调,规定bc/l>0.25(即l/bc<4时取l/bc=4);当bc/l<0.05(即l/bc>20)时,表明构造柱间距过大,对提高墙体稳定性和刚度作用已很小。
    由于在施工过程中大多是先砌筑墙体后浇筑构造柱,应注意采取措施保证设构造柱墙在施工阶段的稳定性。
    对壁柱间墙或带构造柱墙的高厚比验算,是为了保证壁柱间墙和带构造柱墙的局部稳定。如高厚比验算不能满足公式(6.1.1)要求时,可在墙中设置钢筋混凝土圈梁。当圈梁宽度b与相邻壁柱间或相邻构造柱间的距离s的比值b/s≥1/30时,圈梁可视作不动铰支点。当相邻壁柱间的距离s较大,为满足上述要求。圈梁宽度b<s/30时,可按等刚度原则增加圈梁高度。

6.1.3 用厚度小于90mm的砖或块材砌筑的隔墙,当双面用较高强度等级的砂浆抹灰时,经部分地区工程实践证明,其稳定性满足使用要求。本次修订时增加了对于厚度小于90mm的墙,当抹灰层砂浆强度等级等于或大于M5时,包括抹灰层的墙厚达到或超过90mm时,可按h=90mm验算高厚比的规定。

6.1.4 对有门窗洞口的墙[β]的修正系数μ2,系根据弹性稳定论并参照实践经验拟定的。根据推导,μ2尚与门窗高度有关,按公式(6.1.4)算得的μ2,约相当于门窗洞高为墙高2/3时的数值。当洞口高度等于或小于墙高1/5时,可近似采用μ2等于1.0。当洞口高度大于或等于墙高的4/5时,门窗洞口墙的作用已较小。因此,在本次修编中,对当洞口高度大于或等于墙高的4/5时,作了较严格的要求,按独立墙段验算高厚比。这在某些仓库建筑中会遇到这种情况。

6.2.1 本条是强制性条文,汶川地震灾害的经验表明,预制钢筋混凝土板之间有可靠连接,才能保证楼面板的整体作用,增加墙体约束,减小墙体竖向变形,避免楼板在较大位移时坍塌。
    该条是保整结构安全与房屋整体性的主要措施之一,应严格执行。

6. 2.2 工程实践表明,墙体转角处和纵横墙交接处设拉结钢筋是提高墙体稳定性和房屋整体性的重要措施之一。该项措施对防止墙体温度或干缩变形引起的开裂也有一定作用。调查发现,一些开有大(多)孔洞的块材墙体,其设于墙体灰缝内的拉结钢筋大多放到了孔洞处,严重影响了钢筋的拉结。研究表明,由于多孔砖孔洞的存在,钢筋在多孔砖砌体灰缝内的锚固承载力小于同等条件下在实心砖砌体灰缝内的锚固承载力。根据试验数据和可靠性分析,对于孔洞率不大于30%的多孔砖,墙体水平灰缝拉结筋的锚固长度应为实心砖墙体的1.4倍。为保障墙体的整体性能与安全,特制定此条文,并将其定为强制性条文。

6.2.4 在砌体中留槽及埋设管道对砌体的承载力影响较大,故本条规定了有关要求。

6.2.6 同2001规范相应条文关于梁下不同材料支承墙体时的规定。

6.2.8 对厚度小于或等于240mm的墙,当梁跨度大于或等于本条规定时,其支承处宜加设壁柱。如设壁柱后影响房间的使用功能。也可采用配筋砌体或在墙中设钢筋混凝土柱等措施对墙体予以加强。

6.2.11 本条根据工程实践将砌块墙与后砌隔墙交接处的拉结钢筋网片的构造具体化,并加密了该网片沿墙高设置的间距(400mm)。

6.2.12 为增强混凝土砌块房屋的整体性和抗裂能力和工程实践经验提出了本规定。为保证灌实质量,要求其坍落度为160mm~200mm的专用灌孔混凝土(Cb)。

6.2.13 混凝土小型砌块房屋在顶层和底层门窗洞口两边易出现裂缝,规定在顶层和底层门窗洞口两边200mm范围内的孔洞用混凝土灌实,为保证灌实质量,要求混凝土坍落度为160mm~200mm。