9.2.1 配筋砌块砌体构件正截面承载力,应按下列基本假定进行计算:
    1 截面应变分布保持平面;
    2 竖向钢筋与其毗邻的砌体、灌孔混凝土的应变相同;
    3 不考虑砌体、灌孔混凝土的抗拉强度;
    4 根据材料选择砌体、灌孔混凝土的极限压应变:当轴心受压时不应大于0.002;偏心受压时的极限压应变不应大于0.003;
    5 根据材料选择钢筋的极限拉应变,且不应大于0.01;
    6 纵向受拉钢筋屈服与受压区砌体破坏同时发生时的相对界限受压区的高度,应按下式计算:

    式中:ξb——相对界限受压区高度ξb为界限受压区高度与截面有效高度的比值;
         fy——钢筋的抗拉强度设计值;
         Es——钢筋的弹性模量。
    7 大偏心受压时受拉钢筋考虑在h0—1.5x范围内屈服并参与工作。

9.2.2 轴心受压配筋砌块砌体构件,当配有箍筋或水平分布钢筋时,其正截面受压承载力应按下列公式计算:

N≤φ0g(fgA+0.8fyAs)         (9.2.2—1)
φ0g=1/(1+0.001β2)         (9.2.2—2)

    式中:N——轴向力设计值;
        fg——灌孔砌体的抗压强度设计值,应按第3. 2.1条采用;
        fy——钢筋的抗压强度设计值;
        A——构件的截面面积;
        As——全部竖向钢筋的截面面积;
        φ0g——轴心受压构件的稳定系数;
        β——构件的高厚比。
    注:1 无箍筋或水平分布钢筋时,仍应按式(9.2.2)计算,但应取fyAs=0;
        2 配筋砌块砌体构件的计算高度H0可取层高。

9.2.3 配筋砌块砌体构件,当竖向钢筋仅配在中间时,其平面外偏心受压承载力可按本规范式(5.1.1)进行计算,但应采用灌孔砌体的抗压强度设计值。

9.2.4 矩形截面偏心受压配筋砌块砌体构件正截面承载力计算,应符合下列规定:
    1 相对界限受压区高度的取值,对HPB300级钢筋取ξb等于0.57,对HRB335级钢筋取ξb等于0.55,对HRB400级钢筋取ξb等于0.52;当截面受压区高度x小于等于ξbh0时,按大偏心受压计算;当x大于ξbh0时,按为小偏心受压计算。
    2 大偏心受压时应按下列公式计算(图9.2.4):


N≤fgbx+fyAs—fyAs—ΣfsiAsi              (9.2.4—1)
NeN≤fgbx(h0—x/2)+fyAs(h0—as)—ΣfsiSsi             (9.2.4—2)

    式中:N——轴向力设计值;
         fg——灌孔砌体的抗压强度设计值;
         fy、fy——竖向受拉、压主筋的强度设计值;
         b——截面宽度;
         fsi——竖向分布钢筋的抗拉强度设计值;
         As、As——竖向受拉、压主筋的截面面积;
         Asi——单根竖向分布钢筋的截面面积;
         Ssi ——第i根竖向分布钢筋对竖向受拉主筋的面积矩;
         eN——轴向力作用点到竖向受拉主筋合力点之间的距离,可按第8.2.4条的规定计算;
         as——受压区纵向钢筋合力点至截面受压区边缘的距离,对T形、L形、工形截面,当翼缘受压时取100mm,其他情况取300mm;
         as——受拉区纵向钢筋合力点至截面受拉区边缘的距离,对T形、L形、工形截面,当翼缘受压时取300mm,其他情况取100mm。
    3 当大偏心受压计算的受压区高度x小于2as时,其正截面承载力可按下式进行计算:


图9.2.4 矩形截面偏心受压正截面承载力计算简图


NeN≤fyAs(h0—as)         (9.2.4—3)

    式中:eN——轴向力作用点至竖向受压主筋合力点之间的距离,可按本规范第8.2.4条的规定计算。
    4 小偏心受压时,应按下列公式计算(图9.2.4)

    注:当受压区竖向受压主筋无箍筋或无水平钢筋约束时,可不考虑竖向受压主筋的作用,即取fyAs=0。
    5 矩形截面对称配筋砌块砌体小偏心受压时,也可近似按下列公式计算钢筋截面面积:

    注:小偏心受压计算中未考虑竖向分布钢筋的作用。

9.2.5 T形、L形、工形截面偏心受压构件,当翼缘和腹板的相交处采用错缝搭接砌筑和同时设置中距不大于1.2m的水平配筋带(截面高度大于等于60mm,钢筋不少于2φ12)时,可考虑翼缘的共同工作,翼缘的计算宽度应按表9.2.5中的最小值采用,其正截面受压承载力应按下列规定计算:
    1 当受压区高度x小于等于hf时,应按宽度为bf的矩形截面计算;
    2 当受压区高度x大于hf时,则应考虑腹板的受压作用,应按下列公式计算:
        1)当为大偏心受压时,

N≤fg[bx+(bf—b)hf]+fyAs—fyAs—ΣfsiAsi      (9.2.5—1)

NeN≤fg[bx+(h0—x/2)+(bf—b)hf(h0—hf/2)]+fyAs(h0—as)—ΣfsiSsi       (9.2.5—2)

        2)当为小偏心受压时,

N≤fg[bx+(bf—b)hf]+fyAsσsAs       (9.2.5—3)

NeN≤fg[bx(h0—x/2)+(bf—b)hf(h0—hf/2)]+fyAs(h0—as)       (9.2.5—4)

    式中:bf——T形、L形、工形截面受压区的翼缘计算宽度;
         hf——T形、L形、工形截面受压区的翼缘厚度。


图9.2.5 T形截面偏心受压构件正截面承载力计算简图

表9.2.5 T形、L形、工形截面偏心受压构件翼缘计算宽度bf

考 虑 情 况T、I形截面L形截面
按构件计算高度H0考虑H0/3H0/6
按腹板间距L考虑LL/2
按冀缘厚度hf考虑b+12hfb+6hf
按冀缘的实际宽度bf考虑bfbf