11.9.1 建筑物防雷击电磁脉冲的规定
    第2款 当建筑物遭受直接雷击情况下,线路和设备将产生浪涌电流和电压,产生雷击电磁脉冲干扰,当建筑物内电子信息系统需要防雷击电磁脉冲时,应对建筑物采取防直击雷措施。
    第3款 有些工程在建设过程中,甚至建成后仍不明确用途,有的是供出租使用。
    由于建筑物的自然屏蔽物和各种金属物、电气的保护接地与防雷装置连成共用接地网形成等电位联结,对防雷击电磁脉冲是很重要的。若建筑物施工完成后,再来实现条文所规定的措施是很困难的。
    采取上述措施后,如果需要只要合理选用和安装SPD以及做符合要求的等电位联结即可。
    第5款 防雷区是根据电磁场的衰减情况划分的,以规定各部分空间不同的雷击电磁脉冲的严格程度和指明各区交界处的等电位联结点的位置。
    各区以在其交界处的电磁环境有明显改变作为划分不同防雷区的特征。通常,防雷区设置得越多电磁场强度越小。
    第6款 电子信息系统防雷击电磁脉冲工程设计的重要依据是确定工程的防护等级,而防护等级又是依据对工程所处地区的雷电环境进行风险评估,或按信息系统的重要性和使用性质确定的,决定电子信息系统是否需防护和按什么等级防护,以达到安全、适用、经济。
    雷电环境的风险评估,是根据当地气象环境、地质地理环境、建筑物的重要性、结构特点和电子信息系统设备的重要性及其抗扰能力等因素综合考虑,是一项复杂的工作。

11. 9.2 建筑物及结构的自然屏蔽、线路路径的合理选择及敷设都是电子信息系统防雷击电磁脉冲的最有效的措施之一。但电子设备的供电及信号系统也应为电子设备正常工作提供可靠保证,设置必要的SPD。

11. 9.4 第8款 现阶段SPD配套的过电流保护器件宜通过试验确定其适应性,因此,需由厂商配套供应。

11.8.2 条文规定的最小截面,已经考虑了一定的耐腐蚀能力,并结合多年的实际使用尺寸而提出的。经验证明,规定的截面及厚度在一般情况下能得到良好的使用效果,但是,必须指出,在腐蚀性较大的土壤中,还应采取加大截面或采取其他防腐措施。

11.8.4 接地体的长度是沿用原规范的规定。2.5m的长度是合适的,实践证实,这个长度既便于施工,又能取得较好的泄流效果,可以继续使用。
    当接地网由多根水平或垂直接地极组成时,为了减少相邻接地极的屏蔽作用,接地极的间距规定为5m,此时,相应的利用系数约为0.75~0.85。当接地网的敷设场所受到限制时,上述距离可以根据实际情况适当减小一些,但一般不应小于接地极的长度。

11.8.5 接地导体埋设深度一般在冻土层以下但不应小于0.6m,同时要求远离高温影响的地方。众所周知,接地导体埋设在较深的土层中,能接触到良导电性的土壤,其释放电流的效果好,接地导体埋得越深,土壤的湿度和温度的变化就越小,接地电阻越稳定。

11.8.8 早在20世纪60年代初期,国内外就开始采用钢筋混凝土基础作为各种接地网。通过近50年的运行和总结,证明是切实可行的,现已普遍采用。利用建筑物的钢筋混凝土基础作为接地网的理由是:
    关于钢筋混凝土的导电性能,中国建筑工业出版社出版的《基础接地体及其应用》一书指出,钢筋混凝土在其干燥时,是不良导体,电阻率较大,但当具有一定湿度时,就成了较好的导电物质,电阻率常可达100~200Ω·m。潮湿的混凝土导电性能较好,是因为混凝土中的硅酸盐与水形成导电性盐基性溶液。混凝土在施工过程中加入了较多的水分,成形后结构中密布着很多大大小小的毛细孔洞,因此就有了一些水份储存。当埋入地下后,地下的潮气,又可通过毛细管作用吸入混凝土中,保持一定湿度。
    根据我国的具体情况,土壤一般可保持有20%左右的湿度,即使在最不利的情况下,也有5%~6%的湿度。原苏联对安装在湿度不低于5%的土壤中的柱子和基座的钢筋体进行试验,认为可以作为自然接地体。在不损坏它们的电气和机械特性下,能把极大的冲击电流引入大地。
    在利用基础内钢筋作为接地极时,有人不管周围环境条件如何,甚至位于岩石上也利用,这是错误的。因此,规定了“周围土壤的含水量不低于4%”。从图11-1可见混凝土的含水量约在3.5%及以上时其电阻率就趋于稳定,当小于3.5%时电阻率随水分的减小而增大。因此,含水量定为不低于4%。该含水量应是当地历史上一年中最早发生雷闪时间以前的含水量,不是夏季的含水量。
    图11-1所示,在混凝土的真实湿度的范围内(从水饱和到干涸)其电阻率的变化约为520倍。在重复饱和和干涸的整个过程中,没有观察到各点的位移,也就是每一湿度有一相应的电阻率。

    当基础的外表面有沥青质的防腐层时,以往认为该防腐层是绝缘的,不可利用基础内钢筋作接地极。但是,实践证实并不是这样,国内外都有人作过测试和分析,认为是可利用作为接地极的。《建筑电气》曾刊登一篇译文名称为《利用防侵蚀钢筋混凝土基础作为接地体的可能性》,在其结论中指出:“厚度3mm的沥青涂层,对接地极电阻无明显的影响,因此,在计算钢筋混凝土基础接地电阻时,均可不考虑涂层的影响。厚度为6mm的沥青涂层或3mm的乳化沥青涂层或4mm的粘贴沥青卷材,仅当周围土壤的等值电阻率≤100Ω·m和基础面积的平均边长S≤100m时,其基础网电阻约增加33%,在其他情况下这些涂裱层的影响很小,可忽略不计。”
    因此,本条规定钢筋混凝土基础的外表面无防腐层或有沥青质的防腐层时,宜利用其作为接地网。

11. 8.10 闭合环状接地体,环越小,环内的电位越平,地面的均压效果越好,环内被保护物体越安全。但是考虑到维修方便和疏散雷电流的效果好等因素,规定了沿建筑物外面四周敷设在闭合环状的水平接地网,可埋设在建筑物散水以外的基础槽边。
    将接地导体直接敷设在基础坑底与土壤接触是不合适的。由于接地体受土壤的腐蚀早晚是会破损的,被基础压在下边,日后无法维修,因此规定应敷设在散水以外。散水一般距建筑物外墙皮0.5~0.8m,散水以外的地下土壤也有一定的湿度,对电阻率的下降和疏散雷电流的效果好。

11.8.11 防雷装置的接地电阻值,是指每年雨季以前开春以后测量的电阻值。防雷装置每年均应检查和测量一次,有损坏的地方能早日发现修复,否则比不装防雷装置更危险,这是因为装了避雷针的建筑物,受雷击的可能比不装防雷装置的建筑物高的缘故。

11.7.4 为了减少引下线的电感量,引下线应以较短路径接地。
    对于建筑艺术要求较高的建筑物,引下线可以采用暗设但截面要加大一级,这主要考虑维修困难。

11.7. 7 条文要求钢筋直径为16mm及以上时,应将两根钢筋并在一起使用。此时的截面积为402mm2,当钢筋直径为10mm及以上时,要求将四根钢筋并在一起使用,此时的截面积为314mm2,比国外规定最严的日本的300mm2截面还大。所以是安全可靠的。
    利用建筑物钢筋混凝土中的钢筋作为引下线,不仅是节约钢材问题,更重要的是比较安全。因为框架结构的本身,就将梁和柱内的钢筋连成一体形成一个法拉第笼,这对平衡室内的电位和防止侧击都起到了良好的作用。

11.6.3 避雷针的最小尺寸,是沿用我国数十年的习惯做法确定的。如果按雷击避雷针时的热稳定校验,并不需要所规定这么大的截面,在这里,各种材料的机械强度和腐蚀因素确是考虑避雷针尺寸的主要着眼点。经计算证实,在同样风压和长度下,钢管所产生的挠度比圆钢小。
    装在烟囟顶上的避雷针,考虑到烟气温度高,腐蚀性大,而且维修相对比建筑物困难,再加上损坏不严重时也不易及时发现,所以截面要求比一般的大一些。

11.6.4 在同一截面下,圆钢的周长比扁钢的小,因此,它与空气的接触面也小,当然受空气腐蚀相对也就小了,在设计中宜优先采用圆钢。但是,有些民用建筑物,由于美观的要求,避雷带不允许支起很高,采用扁钢直接贴敷在建筑物或构筑物表面上也是允许的。所以,我们也规定了扁钢的最小截面,供设计人员根据具体情况灵活确定。

11. 6.5 条文内容是根据IEC防雷标准规定的。主要针对防雷安全而言。条文规定的不需要防金属板雷击穿孔的屋面,是指民用建筑中的一些如自行车棚等无易燃危险的简易棚子。
    当工程对屋面金属板有防腐蚀、防渗漏要求时,还应另有相应补充措施。

11.6.6 屋顶上的旗杆、金属栏杆、金属装饰物体等,其尺寸不小于对标准接闪器所规定尺寸时,宜作为接闪器使用的理由是:这些物体在建筑物上处于致高点,它很难处于接闪器的保护范围之内,如果它与建筑物被利用的结构钢筋能连成可靠的电气通路,又符合接闪器的要求,作为本建筑的避雷针(带)利用,既经济又美观。
    条文2款中所指的钢管和钢罐,是指在民用建筑物的屋顶上放置的太阳能热水管道和热水箱罐等金属容器,它不会由于被雷击穿而发生危险。所以只要厚度不小于2.5mm就可以利用。

11.6.7 推荐接闪器应热镀锌的理由是热镀锌接闪器比涂漆的接闪器具有防腐效果好、维修量少及安全可靠等优点。多年的运行实践证明,一些解放初期安装的镀锌接闪器,迄今已安全使用50余年仍完好无损,基本无维修工作量。而涂漆的接闪器则必须每一、二年重新涂漆维修,维修量较大且有时要请专业队伍进行,花费很多,相比之下很不经济。
    还可以采取其他新型的防腐蚀措施,只要与环境相适应且能达到预期的防腐蚀效果即可。 

11.5.1 近年来民用建筑上经常装设微波天线、电视发射天线、卫星接收天线、广播发射和接收天线以及共用电视接收天线等。
    对于这些弱电系统的防雷问题,弱电行业的行业标准都有明确的规定,但是查阅这些标准后发现都有一个统一的要求:“如天线架设在房屋等建筑物顶部,天线的防雷与建筑物的防雷应纳入同一防雷系统……”。对于弱电设备的防雷,主要是以均压为主,建筑物的电源处理,接地方式和选材等都与弱电设备有关。当解决弱电设备的电源与接地、电源接地与前端进行均压诸问题时,不综合考虑是不行的。本条编写的思想基础就是均压,其理由 如下:
    1 各种天线的同轴电缆的芯线,都是通过匹配器线圈与其屏蔽层相连,所以,芯线实际上与天线支架、保护钢管处于同一电位。当建筑物防雷装置或天线遭雷击时,由于保护管的屏蔽作用和集肤效应,同轴电缆芯线和屏蔽层无雷电流流过。当雷击天线支架时,由于天线支架已与建筑物防雷装置最少有两处连在一起,大部分雷击电流沿建筑物防雷装置数条引下线流入大地,其中少量的雷电流经同轴电缆的保护钢导管流入大地。由于雷电流的频率高达数千赫兹,属于高频范畴,产生集肤效应,所以这部分雷电流被排挤到同轴电缆的保护钢导管上去了,此时电缆芯中产生感应反电势,从理论上讲在有集肤效应作用下,流经芯线的雷电流趋向于零。
    2 同轴电缆芯线和屏蔽层与钢管之间的电位差没有横向电位差,而仅有纵向电位差,该值为流经钢管的雷电流与钢导管耦合电阻的乘积,钢导管的耦合电阻比其直流电阻小得多。
    3 天线塔不在机房上,而且远离机房,此时要求进出机房的各种金属管道和电缆的金属外皮或穿金属导管的全塑电缆的金属管道应埋地敷设的理由,参见本章第11.3.4条的说明。对于埋地长度不应小于50m的要求,还是沿用了原规范和《工业企业通信接地规范》的规定,我们认为:弱电设备的耐压,一般比强电设备低,尽量使侵入的高电位越小越好,再加上严格的均压措施,就相当可靠了。50m的埋地电缆段或穿金属导管的全塑电缆埋地敷设的措施,已经运行了数十年,实践证明是安全可靠的。因为弱电设备一般比较贵重,而且它的前端设备均处于致高点上,容易受雷击,或者说受雷击的几率比较多,保持50m的电缆段是适宜的。
    4 金属管道直接引入建筑物时,即使采取接地措施后,若雷击于入户附近的管道上,高电位侵入仍然很高,对建筑物仍存在危险。因此,如果管道在没有自然屏蔽条件或易遭受雷击的情况下,在入户附近的一段,应与保护接地和防雷接地装置相连。
    5 当避雷针装于建筑物上并采取本条各项措施时,即使雷击于入户附近的管道上,对建筑物不会再发生危险。
    6 由于机房内的设备大都是较贵重的电子设备,经不起大电流和高电压的冲击,如果首层地面不是钢筋混凝土楼板时,要求安装设备的地面不能出现很大的电位差,为保护设备的安全运行,尽量做到一个均衡电压的电位面,故要求均压网格不大于1. 5m×1.5m。如果是将设备安装在钢筋混凝土楼板上时,由于钢筋混凝土楼板内的钢筋足以起到均压作用,就没有必要再作均压网了。

11.5.2 固定在建筑物上的节日彩灯、航空障碍标志灯及各种排陲风机、正压送风机、风口、冷却水塔等非临时设备的金属外壳或保护网罩,在遭受雷击时,当采取了本条1-4款的措施之后与本规范第11.5.1条的部分情况有些相似,本条新增措施也是基于第11.5.1条有关说明的理由制定的。
    对于五金属外壳和无保护网罩的用电设备(如厕所排风扇、风机等),这些用电设备,如果不在接闪器的保护之内,或者根本就不做防雷保护,其带电体(电机和管线等)遭受雷击的可能性是比较大的,所以这些用电设备均应处于接闪器的保护范围以内。

11.3.2 防直击雷的措施
    第1款 防直接雷击的接闪器应采用装设在屋角、屋脊、女儿墙及屋檐上的避雷带,并在屋面装设不大于10m×10m或12m×8m的网格,突出屋面的物体应沿其顶部四周装设避雷带,在屋面接闪器保护范围之外的物体应装接闪器,并和屋面防雷装置相连。
    第7款 利用钢筋混凝土中的钢筋作为防雷装置的引下线时,其引下线的数量不作规定,但强调四个角易受雷击部位应被利用。间距不应大于18m的规定,完全是加大安全系数,目的是尽量将分流途径增多,使每根柱子分流减至最小,使其结构不易由于雷电流的通过而造成任何损坏。另一方面,引下线多了雷电流通过柱子传到每根梁内钢筋,又由梁内传到板内的钢筋,使整个楼板形成一个电位面,人和设备在同一个电位面上,因此人与设备都是安全的。

11.3.3 由于塔式避雷针和高层建筑物在其顶点以下的侧面有遭到雷击的记载,因此,希望考虑高层建筑物上部侧面的保护。有下列三点理由认为这种雷击事故是轻的:
    1 侧击具有短的极限半径(吸引半径),即小的滚球半径,其相应的雷电流也是较小的;
    2 高层建筑物的结构是能耐受这些小电流的雷击;
    3 建筑物遭受侧击损坏的记载尚不多,这一点证实了前两点理由的真实性。因此,对高层建筑物上部侧面雷击的保护不需另设专门接闪器,而利用建筑物本身的钢构架、钢筋体及其他金属物。
    将外墙上的金属栏杆、金属门窗等较大金属物连到建筑物的防雷装置上是首先应采取的防侧击措施。
    塑钢门窗在工程中广泛应用,但工程界对塑钢门窗如何作防雷暂无定论,相关部门当前也正在做一些工作,但近期都还未有结论。塑钢门窗的外包塑料层是绝缘的,但塑钢门窗的制造标准也并不要求其耐压值能满足防直击过电压;塑钢门窗的内骨料是金属的,但塑钢门窗的制造标准也并不要求其内骨料有较好的连通导电性。而各个塑钢门窗厂的制造标准也不尽相同,有的厂家的产品能满足外包塑料层能耐受直击雷冲击过电压的要求,有的厂家的产品能满足内骨料连通导电性的要求,因此均需要设计人员根据工程实际情况采取相应的防雷措施。

11.3.4 为了防止雷击周围高大树木或建、构筑物跳击到线路上的高电位或雷直击线路时的高电位侵入建筑物内而造成人身伤亡或设备损坏,低压线路宜全线采用电缆埋地或穿金属导管埋地引入。当难于全线埋设电缆或穿金属导管敷设时,允许从架空线上换接一段有金属铠装的电缆或全塑电缆穿金属导管埋地引入。
    但需强调,电缆与架空线交接处必须装设避雷器并与铁横担、绝缘子铁脚、电缆外皮连在一起共同接地,入户端的电缆外皮必须接到防雷和电气保护接地网上才能起到应有的保护作用。
    规定埋地电缆长度不小于2ρ(m)是考虑电缆金属外皮、铠装、钢导管等起散流接地体的作用。接地导体在冲击电流下其有效长度为2ρ(m)。又限制埋地电缆长度不应小于15m,是考虑架空线距爆炸危险环境至少为杆高的1.5倍,杆高一般为10m,即是15m。英国防雷法规针对爆炸和火灾危险场所时,电缆长度不小于15m,对民用建筑来说,这一距离更是可靠的。
    由于防雷装置直接装在建、构筑物上,要保持防雷装置与各种金属物体之间的安全距离已经很难做到。因此只能将屋内的各种金属管道和金属物体与防雷装置就近接在一起,并进行多处连接,首先是在进出建、构筑物处连接,使防雷装置和邻近的金属物体电位相等或降低其间的电位差,以防反击危险。

11.3.5 为了防止雷击电流流过防雷装置时所产生的高电位对被保护建筑物或与其有联系的金属物体和金属管道发生反击,应使防雷装置与这些物体和管道之间保持一定的安全距离。
    关于公式中分流系数Kc值,本规范采用了IEC的系数。通过分析认为,这个系数是合理的,如单根引下线其引下线流散的是全部雷电流,因此Kc=1。当为两根引下线时,每根引下线流散的雷电流从宏观上讲是1/2雷电流,但根据不同情况(如雷击点距引下线的远近等因素)又可以说是不相等的。IEC规定两根引下线的Kc=0.66,这一规定与我国的规定是近似的,是安全的。多根引下线规定Kc=0.44也是相当安全的,引下线越多安全度就越高。
    本规范还规定,除满足计算结果外,Sa1还不得小于2m,这是沿用了我国民用建筑物安全距离的习惯规定。

11.3.6 条文主要是等电位措施。钢筋混凝土结构的建筑物其均压效果比较好,梁与柱内的钢筋均有贯通性连接,多数楼板与梁的钢筋只隔50mm的混凝土层,只需25kV的电压即可以击穿使楼板均压,在楼板上放置的东西和人将不会损坏和出现安全问题。值得引起重视的是竖向金属管道,它可能带有很高的电位,如处理不当,就可能出现跳闪现象。此时有两种情况,其一是金属管带高电位向周围和金属物跳击,另一种情况是结构中的钢筋带高电位向管子跳击。由于雷电流的数值(经过多次分流)不易计算,因此本条规定每三层连接一次,这一数值是十分可靠的。

11.3.7 利用建筑物钢筋混凝土基础作为接地网的说明见第11.8.8条的说明。当专设接地网时,接地网应围绕建筑物敷设一个闭合环路,其冲击接地电阻不应大于10Ω,其目的是为了使被保护建筑物首层地平电位平滑,减少跨步电压和接触电压,10Ω的规定是沿用现行规范的规定。

11.2.1、11.2.2 民用建筑物的防雷分类,原规范中是按一、二、三级划分的,与国家标准的一、二、三类分类不一致,执行中产生了不协调。此次修订改为按国家标准规定对民用建筑物进行防雷分类。按国家标准的防雷分类规定,民用建筑中无第一类防雷建筑物,其分类应划分为第二类及第三类防雷建筑物。

11.2.3 第5-6款 按年预计雷击次数界定的建筑物的防雷分类是按建筑物的年损坏危险度及值(需要防雷的建筑物每年可能遭雷击而损坏的概率)小于或等于可接受的最大损坏危险度Rc值。本规范采用每年十万分之一的损坏概率,即Rc值为10-5。该条文系引用国家标准《建筑物防雷设计规范》GB 50057。说明参见该规范第2.0.3条第8-9款条文说明。

11.2.4 第4-5款 参见《建筑物防雷设计规范》GB 50057第2.0.4条条文说明。

11.1.2 我国地域辽阔,就雷电活动规律而言各地区差别很大。从地理条件来看,湿热地区的雷电活动多于干冷地区,在我国大致是华南、西南、长江流域、华北、东北、西北等依次递减。从地域看是山区多于平原,陆地多于湖海。从地质条件看是有利于很快聚集与雷云相反电荷的地面(如地下埋有导电矿藏的地区、地下水位高的地方、矿泉和小河沟及地下水出口处、土壤电阻率突变的地方、土山的山顶以及岩石山的山脚下土壤厚的地方等)容易落雷。从地形条件看,某些地形可以引起局部气候的变化,造成有利于雷云形成和相遇的条件,如某些山区,山的南坡落雷次数明显多于北坡,靠海的一面山坡明显多于背海的一面山坡,环山中的平地落雷次数明显多于峡谷,风暴走廊与风向一致的地方的风口和顺风的河谷容易落雷。从地物条件看,由于地物的影响,有利于雷云与大地之间建立良好的放电通道,如孤立高耸的地物、排出导电尘埃的排废气管道、建筑物旁的大树、山区和旷野地区的输电线路等落雷次数就多。
    当然雷电频繁程度与地面落雷虽是两个不同的概念,但是雷电活动多的地方往往地面落雷次数就多。由于自然界变化较大(植树或开采矿藏等)各地的气候变化很大,因此在设计工作中应因地制宜地调查当地近年来的雷电活动资料,作为设计的依据。
    雷击选择性的规律,对于正确考虑防雷措施是一个极其重要的因素。从多年来的运行经验和国内外的模拟试验资料证明,凡建筑物坐落在山谷潮湿地带,河边湖边,土壤结构不同的地质交界处,地下有矿脉及地下水露头处等地方,遭受雷击较多。可见,雷击事故发生除与雷电日的多少有关外,在很大程度上与地形、地貌、建筑物高度、建筑物的结构形式以及建筑地点的地质条件等因素都有密切关系。日本在《雷与避雷》论文中指出,当建筑物周围的土壤是砂砾地(ρ=105Ω·m)时,雷击建筑物的几率为11.2%,当建筑物是坐落在砂质黏土ρ=104Ω·m) 上 时,则建筑物遭受雷击的几率可高达84.5%。综合国内外资料和多年来我国科研设计部门积累的实践经验,在制定防雷措施时,应将调查研究当地的气象、地质等环境条件作为一个重要依据是必要的。

11.1.3 水利电力科学研究院高压所在《放射性避雷针和普通避雷针引雷效果的比较》论文结论中指出:“根据以上几项试验结果,如果再考虑到模拟试验中的避雷针头是真型,没有按比例尺作几何尺寸和放射性剂量的缩小,且在实际运行情况下避雷针头的几何形状及尺寸相对于击距来说是完全可以忽略的,那么可以想象既然放射性避雷针在没有缩小比例尺的情况下都没有显示出明显的作用,在实际运行条件下就很难说与普通避雷针有任何差别了。因此,我们认为放射性避雷针能增大保护范围、改善引雷效果的说法是缺乏科学根据的。放射性避雷针在引雷效果上并不比同样尺寸的普通避雷针有更大的效果”。
    国外有关研究指出:“不仅由放射性辐射源产生的放射电流太小,而且其作用半径是短的,以致辐射源对增大防雷装置迎面放电或从大地出来的主放电的形成无影响。在实验室用直流电压和冲击电压对放电间隙所作的研究得出,放射性防雷装置的射线对预防放电和击穿性不产生影响,讲究证实:放射性的射线源对建筑物防雷无实际意义,对富兰克林式的防雷装置的作用没有任何改善”。

11.1.4 建筑物防雷设计应在建筑物设计阶段就开始详细研究防雷装置的设计方案,这样就有可能由于利用建筑物的导电金属物体而得到最大的效益,在使用、安全、经济、可靠的基础上,尽量在体现整个建筑物美观的基础上,能以最小投资保证防雷装置的有效性。

11.1.5 由于气象资料更新较快,应以当地气象台(站)的最新资料为准。

11.1. 7 民用建筑多为钢筋混凝土结构,防雷装置与其他设施和人员在雷击过程中很难进行隔离。因此,在无特殊要求的情况下,采取等电位联结是保证安全的有效措施,也易于实现。