4.4.1 建筑围护结构在使用过程中,当围护结构两侧出现温度与湿度差时,会造成围护结构内部温湿度的重新分布。若围护结构内部某处温度低于了空气露点温度,围护结构内部空气中的水分或渗入围护结构内部的空气中的水分将发生冷凝。因此,应防止水蒸气渗透进入围护结构内部,并控制围护结构内部不产生冷凝。

4.4.3 建筑无论是自然通风,还是在采暖或空调条件下,当空气中水蒸气接触围护结构表面时,只要表面温度低于空气露点温度,便会有水析出,表面发生凝结,使围护结构受潮,因此,外围护结构内表面温度不应低于室内空气露点温度。
    外围护结构容易发生内表面结露的情况主要有两种,北方冬季热桥的内表面和南方过渡季围护结构的内表面。
    围护结构的热桥部位系指嵌入墙体的混凝土或金属梁、柱,墙体和屋面板中的混凝土肋或金属件,装配式建筑中的板材接缝以及墙角、屋面檐口、墙体勒脚、楼板与外墙、内隔墙与外墙连接处等部位。这些部位保温薄弱,热流密集,内表面温度较低,可能产生程度不同的结露和长霉现象,影响室内卫生条件和围护结构的耐久性。设计时,应对这些部位的内表面温度进行验算,以便确定其是否低于室内空气露点温度。
    南方过渡季节,当室外温度快速升高、湿度接近饱和时,由于围护结构的内表面温度略低于空气温度,当室外高温、高湿的空气与围护结构内表面接触时,也会发生表面结露现象。设计时,也应当采取合理的措施,避免发生结露。

4.4.5 围护结构的受潮除了直接被雨(水)浸透外,从建筑热工角度来讲,围护结构内部冷凝、围护结构表面结露和泛潮是建筑防潮设计时应考虑的主要问题。围护结构受潮会降低材料性能、滋生霉菌,进而影响建筑的美观、正常使用,甚至使用者的健康。本条仅给出了围护结构防潮设计的基本原则,在围护结构防潮设计过程中,为控制和防止围护结构的冷凝、结露与泛潮,必须根据围护结构使用功能的热湿特点,针对性的采取防冷凝,防结露与防泛潮等综合措施。

4.4.6 在我国长江中、下游夏热冬冷地区春夏之交季节,夏热冬暖沿海地区初春季节,由于气候受热带气团控制,湿空气吹向大陆且骤然增加,房间在开窗情况下,较湿的空气流过围护结构内表面,当围护结构内表面温度低于室内空气露点温度时,就会在外墙内表面、地面上产生结露现象,俗称泛潮。例如在我国长江中、下游以南的夏热冬冷地区,在五六月间的梅雨季节,华南沿海地区初春季节的回南(潮)天应关闭通风口和外窗,减少潮湿空气进入室内,提高建筑围护结构内表面温度,降低室内空气湿度,减少室内表面结露。同时,在可能出现返潮现象的部位应采取适当措施以减少返潮对围护结构带来的危害。

4.3.1 建筑外围护结构包括屋顶、外墙和外窗等。夏季室内热环境的变化主要是室外气温和太阳辐射综合热作用的结果,外围护结构防热能力越强,室外综合热作用对室内热环境影响越小,不易造成室内过热。围护结构内表面温度是衡量围护结构隔热水平的重要指标,夏季内表面温度太高,易造成室内过热,影响人体健康。应把围护结构内表面温度与室内空气温度的差值控制在规范允许的范围内,防止室内过热,保持室内舒适度要求。
    建筑热工设计主要任务之一,是要采取措施提高外围护结构防热能力。对屋面、外墙(特别是西墙)要进行隔热处理,应达到防热所要求的热工指标,减少传进室内的热量和降低围护结构的内表面温度,因而要合理地选择外围护结构的材料和构造形式。最理想的是白天隔热好而夜间散热又快的构造形式。自然通风是排除房间余热,改善室内热湿环境的主要途径之一。要合理设计围护结构热工参数,要有利于房间的通风散热。

4.3.2 本条规定主要是根据建筑热工设计的实际需要,以及与现行有关标准规范相协调。隔热与夏季的室外温度、太阳辐射密切相关。夏热冬暖地区和夏热冬冷地区最热月平均气温在25℃~30℃之间,太阳辐射强烈,例如夏热冬暖和夏热冬冷地区夏季实测屋面外表面温度南京可达62℃,武汉64℃、重庆61℃、广州60℃、南宁60℃以上,西墙外表面温度南京可达51℃,武汉55℃、重庆56℃、广州52℃、南宁54℃以上,建筑设计应采取防热措施,尽量降低室外温度和太阳辐射对室内热环境影响。寒冷地区许多城市夏季最高温度都超过35℃,太阳辐射也很强烈, 围护结构外表面亦可达50℃以上,建筑设计时也应适当兼顾夏季防热。

4.3.3 在当前我国技术经济条件和能源短缺的形势下,建筑设计采取被动式节能方式符合国情和“节能减排”方针。实践证明,采用有利于防热的建筑总平面布置与形体设计、自然通风、建筑遮阳、围护结构隔热和散热、环境绿化、被动蒸发、淋水降温等综合性的技术措施,可以取得很好的防热效果,降低建筑空调能耗。

4.3.4 我国位于北半球,建筑采用南北向或接近南北向,充分利用夏季盛行东南风和西南风的气候条件,结合良好的建筑平、立面设计和门窗设置,可以增强室内外自然通风,提高室内环境质量,并缩短建筑空调降温时间。

4.3.6 在夏季,当有太阳辐射时,采用浅色饰面材料的建筑屋面和外墙面,能反射较多的太阳辐射热,从而能降低空调负荷和自然通风时的内表面温度;当无太阳辐射时,它又能把屋面和外墙内部所积蓄的太阳辐射热较快地向外天空辐射出去,因此,围护结构采用浅色饰面对降低夏季空调耗电量和改善室内热环境都起着重要作用。在夏热冬暖地区非常适宜采用这个技术。夏热冬冷地区浅色饰面建筑物的冬季采暖能耗会有所增大,但与夏季空调能耗综合比较,突出的矛盾仍是在夏季。
    屋面绿化、涂刷隔热涂料、遮阳是解决屋面隔热问题非常有效的方法。绿化屋面可以降低内表面的温度,而且使昼夜温度稳定;涂刷隔热涂料,可以反射大量的太阳辐射,屋面遮阳可以有效遮挡太阳辐射,降低屋面外表面温度,减少热量进入室内,改善室内热环境。

4.3.8 窗户是建筑围护结构中热工性能最薄弱的构件。透过窗户进入室内的太阳辐射热,构成夏季室内空调的主要负荷。建筑各立面朝向中,东、西向易受太阳直射,因此东、西向建筑外墙面和外窗(透光幕墙)设置外遮阳,是减少太阳辐射热进入室内的十分有效措施。外遮阳形式多种多样,如结合建筑外廊、阳台、挑檐遮阳,外窗设置固定遮阳或活动遮阳等。随着建筑节能的发展,遮阳的形式和品种越来越多,各地可结合当地条件加以灵活采用。

4.3.9 房间的天窗和采光顶位于太阳辐射最大的朝向,应采取活动式遮阳即满足采光需要也防止室内过热,但即便是设置了遮阳的天窗或采光顶,在外侧半球空间的散射辐射和内侧集聚的高温空气作用下,天窗或采光顶构件的温度高于室内表面温度对室内产生热辐射,所以应采取设置通风装置或开设天窗等措施排除天窗顶部的热空气,设置淋水、喷雾装置降低天窗和采光顶的温度,以降低天窗或采光顶表面对室内环境的热辐射作用。

4.3.10 电扇调风是指利用房间设置的吊扇、壁扇、摆扇等调节室内风场分布状态,弥补自然通风不稳定缺陷,以风速补偿作用提高室内环境热舒适度。采用电扇调风是传统建筑自然通风状态下改善室内热环境提高热舒适的一种有效措施,也是节约空调能耗的有效措施,在欧美、日本等发达国家以及东南亚地区应用较为普遍,因此南方地区民用建筑在没有特殊要求的房间宜设置电扇。

4.2.1 在冬季,室外空气温度持续低于室内气温,并在一定范围内波动。与之对应的是围护结构中热流始终从室内流向室外,其大小随室内外温差的变化也会产生一定的波动。除受室内气温的影响外,围护结构内表面的冷辐射对人体热舒适影响也很大。为了降低采暖负荷并将人体的热舒适维持在一定的水平,建筑围护结构应当尽量减少由内向外的热传递,且当室外温度急剧波动时,减小室内和围护结构内表面温度的波动,保证人体的热舒适水平。

4.2.11 热桥部位是围护结构热工性能的薄弱环节,确保热桥部位在冬季不结露是避免围护结构内表面霉变的必要条件。从保证建筑正常使用、保证健康室内环境的角度考虑,将冬季热桥内表面温度高于房间空气露点温度设置为强制性条文。

4.2.15 “非平衡保温”是一种“等热流”设计方法,即:在考虑了各朝向太阳辐射作用下,不同朝向外墙的传热系数不同,其中南向较大、北向较小、东西向居中。
    符合条文中所给出的两个可进行“非平衡保温设计”气候条件的地区主要集中在青藏高原及其周边地区,典型城市有:拉萨、日喀则、林芝、昆明、大理、西昌、甘孜、松潘、阿坝、若尔盖、康定、西宁、格尔木、敦煌、民勤、哈密、银川等。

4.1.1 原规范所做的热工设计分区充分考虑了热工设计的需求,且区划与中国气候状况相契合,较好地区分了不同地区不同的热工设计要求。特别是近年来随着建筑节能工作的开展,5个热工分区的概念被广泛使用、深入人心。因此,本次修订时,首先确定了“大区不动”的区划调整原则,沿用严寒、寒冷、夏热冬冷、夏热冬暖、温和地区的区划方法和指标,并将其作为热工设计分区的一级区划。本规范附录A图A.0.3给出了我国热工设计一级区划在较大尺度上的分布状况,可供设计人员参考。

4.1.2 由于中国地域辽阔,每个热工一级区划的面积非常大。例如:同为严寒地区的黑龙江漠河和内蒙古额济纳旗,最冷月平均温度相差18.3℃、HDD18相差4110。对于寒冷程度差别如此大的两个地区,采用相同的设计要求显然是不合适的。因此,规范修订提出了“细分子区”的区划调整目标。
    热工设计二级分区采用“HDD18、CDD26”作为区划指标,将建筑热工各一级区划进行细分。与一级区划指标(最冷、最热月平均温度)相比,该指标既表征了气候的寒冷和炎热的程度,也反映了寒冷和炎热持续时间的长短。采用该指标在一级区划的基础上进行细分,保证了与“大区不动”的指导思想一致;同时,该指标也与《严寒和寒冷地区居住建筑节能设计标准》JGJ 26-2010中的细化分区指标相同。
    需要指出的是:影响气候的因素很多,地理距离的远近并不是造成气候差异的唯一因素。海拔高度、地形、地貌、大气环流等对局地气候影响显著。因此,各区划间一定会出现相互参差的情况。这在只有5个一级区划时已经有所表现,但由于一级区划的尺度较大,现象并不明显。当将一级区划细分后,这一现象非常突出。因此,二级区划没有再采用分区图的形式表达,改用表格的形式给出每个城市的区属。这样避免了复杂图形可能带来的理解偏差,各城市的区属明确、边界清晰,且便于规范的执行和管理。

4.1.3 本规范附录A表A.0.1的气象参数均是以气象观测数据为基础通过一定的统计方法计算出来的。受所掌握气象观测资料的限制,本规范提供了表中所列的354个城镇的气象参数。而在我国的行政区划中,至2009年底,全国31个省级行政区中(不包括港、澳、台地区),有333个地级行政区划单位,2858个县级行政区划单位。从城市数量看,截至2009年,我国城市数量达到654个(其中:4个直辖市、283个地级市、367个县级市)。因此,本规范所给出的城镇数量远远不及城镇的实际数量,更无法覆盖全部行政区。
    按行业标准《建筑气象参数标准》JGJ 35-87中的规定,当建设地点与拟引用数据的气象台站水平距离在50km以内,海拔高度差在100m以内时可以直接引用。附录A中的表A.0.2中给出了附录表A.0.1中未涉及的我国县级以上城镇的地理信息,以及与之距离最近的已知气象数据地点的列表。从表中可以看到,未知城市与参考地点之间符合行业标准《建筑气象参数标准》JGJ 35-87中关于数据直接引用的规定。