11.2.1 本条根据抗震性能要求给出了混凝土最高和最低强度等级的限制。由于混凝土强度对保证构件塑性铰区发挥延性能力具有较重要作用,故对重要性较高的框支梁、框支柱、延性要求相对较高的一级抗震等级的框架梁和框架柱以及受力复杂的梁柱节点的混凝土最低强度等级提出了比非抗震情况更高的要求。
    近年来国内高强度混凝土的试验研究和工程应用已有很大进展,但因高强度混凝土表现出的明显脆性,以及因侧向变形系数偏小而使箍筋对它的约束效果受到一定削弱,故对地震高烈度区高强度混凝土的应用作了必要的限制。

11.2.2 结构构件中纵向受力钢筋的变形性能直接影响结构构件在地震力作用下的延性。考虑地震作用的框架梁、框架柱、支撑、剪力墙边缘构件的纵向受力钢筋宜选用HRB400、HRB500牌号热轧带肋钢筋;箍筋宜选用HRB400、HRB335、HPB300、HRB500牌号热轧钢筋。对抗震延性有较高要求的混凝土结构构件(如框架梁、框架柱、斜撑等),其纵向受力钢筋应采用现行国家标准《钢筋混凝土用钢 第2部分:热轧带肋钢筋》GB 1499.2中牌号为HRB400E、 HRB500E、HRB335E、 HRBF400E、 HRBF500E的钢筋。这些带“E”的钢筋牌号钢筋的强屈比、屈强比和极限应变(延伸率)均符合本规范第11.2.3条的要求;这些钢筋的强度指标及弹性模量的取值与不带“E”的同牌号热轧带肋钢筋相同,应符合本规范第4.2节的有关规定。

11.2.3 对按一、二、三级抗震等级设计的各类框架构件(包括斜撑构件),要求纵向受力钢筋检验所得的抗拉强度实测值(即实测最大强度值)与受拉屈服强度的比值(强屈比)不小于1.25,目的是使结构某部位出现较大塑性变形或塑性铰后,钢筋在大变形条件下具有必要的强度潜力,保证构件的基本抗震承载力;要求钢筋受拉屈服强度实测值与钢筋的受拉强度标准值的比值(屈强比)不应大于1.3,主要是为了保证“强柱弱梁”、“强剪弱弯”设计要求的效果不致因钢筋屈服强度离散性过大而受到干扰;钢筋最大力下的总伸长率不应小于9%,主要为了保证在抗震大变形条件下,钢筋具有足够的塑性变形能力。
    现行国家标准《钢筋混凝土用钢 第2部分:热轧带肋钢筋》GB 1499.2中牌号带“E”的钢筋符合本条要求。其余钢筋牌号是否符合本条要求应经试验确定。

11.1.1、11.1.2 《建筑工程抗震设防分类标准》GB 50223根据对各类建筑抗震性能的不同要求,将建筑分为特殊设防类、重点设防类、标准设防类和适度设防类四类,简称甲、乙、丙、丁类,并规定了各类别建筑的抗震设防标准,包括抗震措施和地震作用的确定原则。《建筑抗震设计规范》GB 50011则规定,6度时的不规则建筑结构、Ⅳ类场地上较高的高层建筑和7度及以上时的各类建筑结构,均应进行多遇地震作用下的截面抗震验算,并符合有关抗震措施要求;6度时的其他建筑结构则只应符合有关抗震措施要求。
    在对抗震钢筋混凝土结构进行设计时,除应符合《建筑工程抗震设防分类标准》GB 50223和《建筑抗震设计规范》GB 50011所规定的设计原则外,其构件设计应符合本章以及本规范第1章~第10章的有关规定。本章主要对应进行抗震设计的钢筋混凝土结构主要构件类别的抗震承载力计算和抗震措施作出规定。其中包括对材料抗震性能的要求,以及框架梁、框架柱、剪力墙及连梁、梁柱节点、板柱节点、单层工业厂房中的铰接排架柱以及预应力混凝土结构构件的抗震承载力验算和相应的抗震构造要求。有关混凝土结构房屋抗震体系、房屋适用的最大高度、地震作用计算、结构稳定验算、侧向变形验算等内容,应遵守《建筑抗震设计规范》GB 50011的有关规定。
    本次修订不再列入钢筋混凝土房屋建筑适用最大高度的规定。该规定由《建筑抗震设计规范》GB 50011给出。

11.1.3 抗震措施是在按多遇地震作用进行构件截面承载力设计的基础上保证抗震结构在所在地可能出现的最强地震地面运动下具有足够的整体延性和塑性耗能能力,保持对重力荷载的承载能力,维持结构不发生严重损毁或倒塌的基本措施。其中主要包括两类措施。一类是宏观限制或控制条件和对重要构件在考虑多遇地震作用的组合内力设计值时进行调整增大;另一类则是保证各类构件基本延性和塑性耗能能力的各类抗震构造措施(其中也包括对柱和墙肢的轴压比上限控制条件)。由于对不同抗震条件下各类结构构件的抗震措施要求不同,故用“抗震等级”对其进行分级。抗震等级按抗震措施从强到弱分为一、二、三、四级。本章有关条文中的抗震措施规定将全部按抗震等级给出。根据我国抗震设计经验,应按设防类别、建筑物所在地的设防烈度、结构类型、房屋高度以及场地类别的不同分别选取不同的抗震等级。在表11.1.3中给出了丙类建筑按设防烈度、结构类型和房屋高度制定的结构中不同部分应取用的抗震等级。甲、乙类和丁类建筑的抗震等级应按《建筑工程抗震设防分类标准》GB 50223的规定在表11.1.3的基础上进行调整。
    与02规范相比,表11.1.3作了下列主要调整:
    1 考虑到框架结构的侧向刚度及抗水平力能力与其他结构类型相比相对偏弱,根据2008年汶川地震震害经验以及优化设计方案的考虑,将框架结构在9度区的最大高度限值以及其他烈度区不同抗震等级的划分高度由30m降为24m。
    2 考虑到近年来因禁用黏土砖而使层数不多的框架-剪力墙结构、剪力墙结构的建造数量增加,为了更合理地考虑房屋高度对抗震等级的影响,将框架-剪力墙结构、剪力墙结构和部分框支剪力墙结构的高度分档从两档增加为三档,对高度最低一档(小于24m)适度降低了抗震等级要求。
    3 因异形柱框架的抗震性能与一般框架有明显差异,故在表注中明确指出框架的抗震等级规定不适用于异形柱框架;异形柱框架应按有关行业标准进行设计。
    4 根据近年来的工程经验,调整了对板柱-剪力墙结构抗震等级的有关规定。
    5 根据近年来的工程实践经验,明确了当框架-核心筒结构的高度低于60m并符合框架-剪力墙结构的有关要求时,其抗震等级允许按框架-剪力墙结构取用。
    表11.1.3的另一重含义是,表中列出的结构类型也是根据我国抗震设计经验,在《建筑抗震设计规范》GB 50011规定的最大高度限制条件下,适用于抗震的钢筋混凝土结构类型。

11.1.4 本条给出了在选用抗震等级时,除表11.1.3外应满足的要求。其中第1款中的“结构底部的总倾覆力矩”一般是指在多遇地震作用下通过振型组合求得楼层地震剪力并换算出各楼层水平力后,用该水平力求得的底部总倾覆力矩。第2款中裙房与主楼相连时的“相关范围”,一般是指主楼周边外扩不少于三跨的裙房范围。该范围内结构的抗震等级不应低于按主楼结构确定的抗震等级,该范围以外裙房结构的抗震等级可按裙房自身结构确定。当主楼与裙房由防震缝分开时,主楼和裙房分别按自身结构确定其抗震等级。

11.1.5 按本规范设置了约束边缘构件,并采取了相应构造措施的剪力墙和核心筒壁的墙肢底部,通常已具有较大的偏心受压强度储备,在罕遇水准地震地面运动下,该部位边缘构件纵筋进入屈服后变形状态的几率通常不会很大。但因墙肢底部对整体结构在罕遇地震地面运动下的抗倒塌安全性起关键作用,故设计中仍应预计到墙肢底部形成塑性铰的可能性,并对预计的塑性铰区采取保持延性和塑性耗能能力的抗震构造措施。所规定的采取抗震构造措施的范围即为“底部加强部位”,它相当于塑性铰区的高度再加一定的安全裕量。该底部加强部位高度是根据试验结果及工程经验确定的。其中,为了简化设计,只考虑了高度条件。本次修订根据经验将02版规范规定的确定底部加强部位高度的条件之一,即不小于总高度的1/8改为1/10;并明确,当墙肢嵌固端设置在地下室顶板以下时,底部加强部位的高度仍从地下室顶板算起,但相应抗震构造措施应向下延伸到设定的嵌固端处。

11.1.6 表11.1.6中各类构件的承载力抗震调整系数γRE是根据现行国家标准《建筑抗震设计规范》GB 50011的规定给出的。该系数是在该规范采用的多遇地震作用取值和地震作用分项系数取值的前提下,为了使多遇地震作用组合下的各类构件承载力具有适宜的安全性水准而采取的对抗力项的必要调整措施。此次修订,根据需要,补充了受冲切承载力计算的承载力抗震调整系数γRE
    本次修订把02版规范分别写在框架梁、框架柱及框支柱以及剪力墙各节中的抗震正截面承载力计算规定统一汇集在本条内集中表示,即所有这些构件的正截面设计均可按非抗震情况下正截面设计的同样方法完成,只需在承载力计算公式右边除以相应的承载力抗震调整系数γRE。这样做的理由是,大量各类构件的试验研究结果表明,构件多次反复受力条件下滞回曲线的骨架线与一次单调加载的受力曲线具有足够程度的一致性。故对这些构件的抗震正截面计算方法不需要像对抗震斜截面受剪承载力计算方法那样在静力设计方法的基础上进行调整。

11.1.7 在地震作用下,钢筋在混凝土中的锚固端可能处于拉、压反复受力状态或拉力大小交替变化状态。其粘结锚固性能较静力粘结锚固性能偏弱(锚固强度退化,锚固段的滑移量偏大)。为保证在反复荷载作用下钢筋与其周围混凝土之间具有必要的粘结锚固性能,根据试验结果并参考国外规范的规定,在静力要求的纵向受拉钢筋锚固长度la的基础上,对一、二、三级抗震等级的构件,规定应乘以不同的锚固长度增大系数。
    对允许采用搭接接头的钢筋,其考虑抗震要求的搭接长度应根据搭接接头百分率取纵向受拉钢筋的抗震锚固长度laE,乘以纵向受拉钢筋搭接长度修正系数ζ。
    梁端、柱端是潜在塑性铰容易出现的部位,必须预计到塑性铰区内的受拉和受压钢筋都将屈服,并可能进入强化阶段。为了避免该部位的各类钢筋接头干扰或削弱钢筋在该部位所应具有的较大的屈服后伸长率,规范要求钢筋连接接头宜尽量避开梁端、柱端箍筋加密区。当工程中无法避开时,应采用经试验确定的与母材等强度并具有足够伸长率的高质量机械连接接头或焊接接头,且接头面积百分率不宜超过50%。

11.1.8 箍筋对抗震设计的混凝土构件具有重要的约束作用,采用封闭箍筋、连续螺旋箍筋和连续复合矩形螺旋箍筋可以有效提高对构件混凝土和纵向钢筋的约束效果,改善构件的抗震延性。对于绑扎箍筋,试验研究和震害经验表明,对箍筋末端的构造要求是保证地震作用下箍筋对混凝土和纵向钢筋起到有效约束作用的必要条件。本次修订强调采用焊接封闭箍筋,主要是倡导和适应工厂化加工配送钢筋的需求。

11.1.9 预埋件反复荷载作用试验表明,弯剪、拉剪、压剪情况下锚筋的受剪承载力降低的平均值在20%左右。对预埋件,规定取γRE等于1.0,故将考虑地震作用组合的预埋件的锚筋截面积偏保守地取为静力计算值的1.25倍,锚筋的锚固长度偏保守地取为静力值的1.10倍。构造上要求在靠近锚板的锚筋根部设置一根直径不小于10mm的封闭箍筋,以起到约束端部混凝土、保证受剪承载力的作用。

10.3.1 根据先张法预应力筋的锚固及预应力传递性能,提出了配筋净间距的要求,其数值是根据试验研究及工程经验确定的。根据多年来的工程经验,为确保预制构件的耐久性,适当增加了预应力筋净间距的限值。

10.3.2 先张法预应力传递长度范围内局部挤压造成的环向拉应力容易导致构件端部混凝土出现劈裂裂缝。因此端部应采取构造措施,以保证自锚端的局部承载力。所提出的措施为长期工程经验和试验研究结果的总结。近年来随着生产工艺技术的提高,也有一些预制构件不配置端部加强钢筋的情况,故在特定条件下可根据可靠的工程经验适当放宽。 

10.3.3~10.3.5 为防止预应力构件端部及预拉区的裂缝,根据多年工程实践经验及原规范的执行情况,这几条对各种预制构件(肋形板、屋面梁、吊车梁等)提出了配置防裂钢筋的措施。

10.3.6 预应力锚具应根据现行国家标准《预应力筋用锚具、夹具和连接器》GB/T 14370、现行行业标准《预应力筋用锚具、夹具和连接器应用技术规程》JGJ 85的有关规定选用,并满足相应的质量要求。

10.3.7 规定了后张预应力筋配置及孔道布置的要求。由于对预制构件预应力筋孔道间距的控制比现浇结构构件更容易,且混凝土浇筑质量更容易保证,故对预制构件预应力筋孔道间距的规定比现浇结构构件的小。要求孔道的竖向净间距不应小于孔道直径,主要考虑曲线孔道张拉预应力筋时出现的局部挤压应力不致造成孔道间混凝土的剪切破坏。而对三级裂缝控制等级的梁提出更厚的保护层厚度要求,主要是考虑其裂缝状态下的耐久性。预留孔道的截面积宜为穿入预应力筋截面积的3.0~4.0倍,是根据工程经验提出的。有关预应力孔道的并列贴紧布置,是为方便截面较小的梁类构件的预应力筋配置。
    板中单根无粘结预应力筋、带状束及梁中集束无粘结预应力筋的布置要求,是根据国内推广应用无粘结预应力混凝土的工程经验作出规定的。

10.3.8 后张预应力混凝土构件端部锚固区和构件端面在预应力筋张拉后常出现两类裂缝:其一是局部承压区承压垫板后面的纵向劈裂裂缝;其二是当预应力束在构件端部偏心布置,且偏心距较大时,在构件端面附近会产生较高的沿竖向的拉应力,故产生位于截面高度中部的纵向水平端面裂缝。为确保安全可靠地将张拉力通过锚具和垫板传递给混凝土构件,并控制这些裂缝的发生和开展,在试验研究的基础上,在条文中作出了加强配筋的具体规定。为防止第一类劈裂裂缝,规范给出了配置附加钢筋的位置和配筋面积计算公式;为防止第二类端面裂缝,要求合理布置预应力筋,尽量使锚具能沿构件端部均匀布置,以减少横向拉力。当难于做到均匀布置时,为防止端面出现宽度过大的裂缝,根据理论分析和试验结果,本条提出了限制这类裂缝的竖向附加钢筋截面面积的计算公式以及相应的构造措施。本次修订允许采用强度较高的热轧带肋钢筋。
    对局部承压加强钢筋,提出当垫板采用普通钢板开穿筋孔的制作方式时,可按本规范第6.6节的规定执行,采用有关局部受压承载力计算公式确定应配置的间接钢筋;而当采用整体铸造的带有二次翼缘的垫板时,本规范局部受压公式不再适用,需通过专门的试验确认其传力性能,所以应选用经按有关规范标准验证的产品,并配置规定的加强钢筋,同时满足锚具布置对间距和边距要求。所述要求可按现行行业标准《预应力筋用锚具、夹具和连接器应用技术规程》JGJ 85的有关规定执行。
    本条规定主要是针对后张法预制构件及现浇结构中的悬臂梁等构件的端部锚固区及梁中间开槽锚固的情况提出的。

10.3.9 为保证端面有局部凹进的后张预应力混凝土构件端部锚固区的强度和裂缝控制性能,根据试验和工程经验,规定了增设折线构造钢筋的防裂措施。

10.3.10、10.3.11 曲线预应力束最小曲率半径rp的计算公式是按本规范附录D有关素混凝土构件局部受压承载力公式推导得出,并与国外规范公式对比后确定的。10Φ15以下常用曲线预应力钢丝束、钢绞线束的曲率半径不宜小于4m是根据工程经验给出的。当后张预应力束曲线段的曲率半径过小时,在局部挤压力作用下可能导致混凝土局部破坏,故应配置局部加强钢筋,加强钢筋可采用网片筋或螺旋筋,其数量可按本规范有关配置间接钢筋局部受压承载力的计算规定确定。
    在预应力混凝土结构构件中,当预应力筋近凹侧混凝土保护层较薄,且曲率半径较小时,容易导致混凝土崩裂。相关计算公式按预应力筋所产生的径向崩裂力不超过混凝土保护层的受剪承载力推导得出。当混凝土保护层厚度不满足计算要求时,第10.3.11条提供了配置U形插筋用量的计算方法及构造措施,用以抵抗崩裂径向力。在计算应配置U形插筋截面面积的公式中,未计入混凝土的抗力贡献。
    这两条是在工程经验的基础上,参考日本预应力混凝土设计施工规范及美国AASHTO规范作出规定的。

10.3.13 为保证预应力混凝土结构的耐久性,提出了对构件端部锚具的封闭保护要求。
    国内外应用经验表明,对处于二b、三a、三b类环境条件下的无粘结预应力锚固系统,应采用全封闭体系。参考美国ACI和PTI的有关规定,对全封闭体系应进行不透水试验,要求安装后的张拉端、固定端及中间连接部位在不小于10kPa静水压力下,保持24h不透水,具体漏水位置可用在水中加颜色等方法检查。当用于游泳池、水箱等结构时,可根据设计提出更高静水压力的要求。

10.2.1 预应力混凝土用钢丝、钢绞线的应力松弛试验表明,应力松弛损失值与钢丝的初始应力值和极限强度有关。表中给出的普通松弛和低松弛预应力钢丝、钢绞线的松弛损失值计算公式,是按国家标准《预应力混凝土用钢丝》GB/T 5223-2002及《预应力混凝土用钢绞线》GB/T 5224-2003中规定的数值综合成统一的公式,以便于应用。当σcon/fptk≤0.5时,实际的松弛损失值已很小,为简化计算取松弛损失值为零。预应力螺纹钢筋、中强度预应力钢丝的应力松弛损失值是分别根据国家标准《预应力混凝土用螺纹钢筋》GB/T 20065-2006、行业标准《中强度预应力混凝土用钢丝》YB/T 156-1999的相关规定提出的。

10.2.2 根据锚固原理的不同,将锚具分为支承式和夹片式两类,对每类作出规定。对夹片式锚具的锚具变形和预应力筋内缩值按有顶压或无顶压分别作了规定。

10.2.4 预应力筋与孔道壁之间的摩擦引起的预应力损失,包括沿孔道长度上局部位置偏移和曲线弯道摩擦影响两部分。在计算公式中,x值为从张拉端至计算截面的孔道长度;但在实际工程中,构件的高度和长度相比常很小,为简化计算,可近似取该段孔道在纵轴上的投影长度代替孔道长度;θ值应取从张拉端至计算截面的长度上预应力孔道各部分切线的夹角(以弧度计)之和。本次修订根据国内工程经验,增加了按抛物线、圆弧曲线变化的空间曲线及可分段叠加的广义空间曲线θ弯转角的近似计算公式。
    研究表明,孔道局部偏差的摩擦系数k值与下列因素有关:预应力筋的表面形状;孔道成型的质量;预应力筋接头的外形;预应力筋与孔壁的接触程度(孔道的尺寸,预应力筋与孔壁之间的间隙大小以及预应力筋在孔道中的偏心距大小)等。在曲线预应力筋摩擦损失中,预应力筋与曲线弯道之间摩擦引起的损失是控制因素。
    根据国内的试验研究资料及多项工程的实测数据,并参考国外规范的规定,补充了预埋塑料波纹管、无粘结预应力筋的摩擦影响系数。当有可靠的试验数据时,本规范表10.2.4所列系数值可根据实测数据确定。

10.2.5 根据国内对混凝土收缩、徐变的试验研究,应考虑预应力筋和普通钢筋的配筋率对σl5值的影响,其影响可通过构件的总配筋率ρ(ρ=ρp+ρs)反映。在公式(10.2.5-1)~公式(10.2.5-4)中,分别给出先张法和后张法两类构件受拉区及受压区预应力筋处的混凝土收缩和徐变引起的预应力损失。公式反映了上述各项因素的影响。此计算方法比仅按预应力筋合力点处的混凝土法向预应力计算预应力损失的方法更为合理。此外,考虑到现浇后张预应力混凝土施加预应力的时间比28d龄期有所提前等因素,对上述收缩和徐变计算公式中的有关项在数值上作了调整。调整的依据为:预加力时混凝土龄期,先张法取7d,后张法取14d;理论厚度均取200mm;相对湿度为40%~70%,预加力后至使用荷载作用前延续的时间取1年的收缩应变和徐变系数终极值,并与附录K计算结果进行校核得出。
    在附录K中,本次修订的混凝土收缩应变和徐变系数终极值,是根据欧洲规范EN 1992-2:《混凝土结构设计——第1部分:总原则和对建筑结构的规定》所提供的公式计算得出。混凝土收缩应变和徐变系数终极值是按周围空气相对湿度为40%~70%及70%~99%分别给出的。混凝土收缩和徐变引起的预应力损失简化公式是按周围空气相对湿度为40%~70%得出的,将其用于相对湿度大于70%的情况是偏于安全的。对泵送混凝土,其收缩和徐变引起的预应力损失值亦可根据实际情况采用其他可靠数据。

10.1.1 为确保预应力混凝土结构在施工阶段的安全,明确规定了在施工阶段应进行承载能力极限状态等验算,施工阶段包括制作、张拉、运输及安装等工序。

10.1.2 根据现行国家标准《工程结构可靠性设计统一标准》GB 50153的有关规定,当进行预应力混凝土构件承载能力极限状态及正常使用极限状态的荷载组合时,应计算预应力作用效应并参与组合,对后张法预应力混凝土超静定结构,预应力效应为综合内力Mr、Vr及Nr,包括预应力产生的次弯矩、次剪力和次轴力。在承载能力极限状态下,预应力作用分项系数γp应按预应力作用的有利或不利分别取1.0或1.2。当不利时,如后张法预应力混凝土构件锚头局压区的张拉控制力,预应力作用分项系数γp应取1.2。在正常使用极限状态下,预应力作用分项系数γp通常取1.0。当按承载能力极限状态计算时,预应力筋超出有效预应力值达到强度设计值之间的应力增量仍为结构抗力部分;当按本规范第6章的实用方法进行承载力计算时,仅次内力应参与荷载效应组合和设计计算。
    对承载能力极限状态,当预应力作用效应列为公式左端项参与作用效应组合时,由于预应力筋的数量和设计参数已由裂缝控制等级的要求确定,且总体上是有利的,根据工程经验,对参与组合的预应力作用效应项,应取结构重要性系数γ0=1.0;对局部受压承载力计算、框架梁端预应力筋偏心弯矩在柱中产生的次弯矩等,其预应力作用效应为不利时,γ0应按本规范公式(3.3.2-1)执行。
    本规范为避免出现冗长的公式,在诸多计算公式中并没有具体列出相关次内力。因此,当应用本规范公式进行正截面受弯、受压及受拉承载力计算,斜截面受剪及受扭截面承载力计算,以及裂缝控制验算时,均应计入相关次内力。
    本次修订增加了无粘结预应力混凝土结构承受静力荷载的设计规定,主要有裂缝控制,张拉控制应力限值,有关的预应力损失值计算,受弯构件正截面承载力计算时无粘结预应力筋的应力设计值、斜截面受剪承载力计算,受弯构件的裂缝控制验算及挠度验算,受弯构件和板柱结构中有粘结纵向钢筋的配置,以及施工张拉阶段截面边缘混凝土法向应力控制和预拉区构造配筋,防腐及防火措施。以上规定的条款列在本章及本规范相关章节的条款中。

10.1.3 本次修订增加了中强度预应力钢丝及预应力螺纹钢筋的张拉控制应力限值。

10.1.5 通常对预应力筋由于布置上的几何偏心引起的内弯矩Npepn以M1表示。由该弯矩对连续梁引起的支座反力称为次反力,由次反力对梁引起的弯矩称为次弯矩M2。在预应力混凝土超静定梁中,由预加力对任一截面引起的总弯矩Mr为内弯矩M1与次弯矩M2之和,即Mr=M1+M2。次剪力可根据结构构件各截面次弯矩分布按力学分析方法计算。此外,在后张法梁、板构件中,当预加力引起的结构变形受到柱、墙等侧向构件约束时,在梁、板中将产生与预加力反向的次轴力。为求次轴力也需要应用力学分析方法。
    为确保预应力能够有效地施加到预应力结构构件中,应采用合理的结构布置方案,合理布置竖向支承构件,如将抗侧力构件布置在结构位移中心不动点附近;采用相对细长的柔性柱以减少约束力,必要时应在柱中配置附加钢筋承担约束作用产生的附加弯矩。在预应力框架梁施加预应力阶段,可将梁与柱之间的节点设计成在张拉过程中可产生滑动的无约束支座,张拉后再将该节点做成刚接。对后张楼板为减少约束力,可采用后浇带或施工缝将结构分段,使其与约束柱或墙暂时分开;对于不能分开且刚度较大的支承构件,可在板与墙、柱结合处开设结构洞以减少约束力,待张拉完毕后补强。对于平面形状不规则的板,宜划分为平面规则的单元,使各部分能独立变形,以减少约束;当大部分收缩变形完成后,如有需要仍可以连为整体。

10.1.7 当按裂缝控制要求配置的预应力筋不能满足承载力要求时,承载力不足部分可由普通钢筋承担,采用混合配筋的设计方法。这种部分预应力混凝土既具有全预应力混凝土与钢筋混凝土二者的主要优点,又基本上排除了两者的主要缺点,现已成为加筋混凝土系列中的主要发展趋势。当然也带来了一些新的课题。当预应力混凝土构件配置钢筋时,由于混凝土收缩和徐变的影响,会在这些钢筋中产生内力。这些内力减少了受拉区混凝土的法向预压应力,使构件的抗裂性能降低,因而计算时应考虑这种影响。为简化计算,假定钢筋的应力取等于混凝土收缩和徐变引起的预应力损失值。但严格地说,这种简化计算当预应力筋和钢筋重心位置不重合时是有一定误差的。

10.1.8 近年来,国内开展了后张法预应力混凝土连续梁内力重分布的试验研究,并探讨次弯矩存在对内力重分布的影响。这些试验研究及有关文献建议,对存在次弯矩的后张法预应力混凝土超静定结构,其弯矩重分布规律可描述为:(1一β)Md+αM2≤Mu,其中,α为次弯矩消失系数。直接弯矩的调幅系数定义为:β=1-Ma/Md,此处,Ma为调整后的弯矩值,Md为按弹性分析算得的荷载弯矩设计值;直接弯矩调幅系数β的变化幅度是:0≤β≤βmax,此处,βmax为最大调幅系数。次弯矩随结构构件刚度改变和塑性铰转动而逐步消失,它的变化幅度是:0≤α≤1.0;且当β=0时,取α=1.0;当β=βmax时,可取α接近为0。且β可取其正值或负值,当取β为正值时,表示支座处的直接弯矩向跨中调幅;当取β为负值时,表示跨中的直接弯矩向支座处调幅。上述试验结果从概念设计的角度说明,在超静定预应力混凝土结构中存在的次弯矩,随着预应力构件开裂、裂缝发展以及刚度减小,在极限荷载阶段会相应减小。当截面配筋率高时,次弯矩的变化较小,反之可能大部分次弯矩都会消失。本次修订考虑到上述情况,采用次弯矩参与重分布的方案,即内力重分布所考虑的最大弯矩除了荷载弯矩设计值外,还包括预应力次弯矩在内。并参考美国ACI规范、欧洲规范EN 1992-2等,规定对预应力混凝土框架梁及连续梁在重力荷载作用下,当受压区高度x≤0.30h0时,可允许有限量的弯矩重分配,同时可考虑次弯矩变化对截面内力的影响,但总调幅值不宜超过20%。

10.1.9 对光面钢丝、螺旋肋钢丝、三股和七股钢绞线的预应力传递长度,均在原规范规定的预应力传递长度的基础上,根据试验研究结果作了调整,并通过给出的公式由其有效预应力值计算预应力传递长度。预应力筋传递长度的外形系数取决于与锚固性能有关的钢筋的外形。

10.1.13 先张法及后张法预应力混凝土构件的受剪承载力、受扭承载力及裂缝宽度计算,均需用到混凝土法向预应力为零时的预应力筋合力Np0。本条对此作了规定。

10.1.14 影响无粘结预应力混凝土构件抗弯能力的因素较多,如无粘结预应力筋有效预应力的大小、无粘结预应力筋与普通钢筋的配筋率、受弯构件的跨高比、荷载种类、无粘结预应力筋与管壁之间的摩擦力、束的形状和材料性能等。因此,受弯破坏状态下无粘结预应力筋的极限应力必须通过试验来求得。国内所进行的无粘结预应力梁(板)试验,得出无粘结预应力筋于梁破坏瞬间的极限应力,主要与配筋率、有效预应力、钢筋设计强度、混凝土的立方体抗压强度、跨高比以及荷载形式有关,积累了宝贵的数据。
    本次修订采用了现行行业标准《无粘结预应力混凝土结构技术规程》JGJ 92的相关表达式。该表达式以综合配筋指标ζ0为主要参数,考虑了跨高比变化影响。为反映在连续多跨梁板中应用的情况,增加了考虑连续跨影响的设计应力折减系数。在设计框架梁时,无粘结预应力筋外形布置宜与弯矩包络图相接近,以防在框架梁顶部反弯点附近出现裂缝。

10.1.15 在无粘结预应力受弯构件的预压受拉区,配置一定数量的普通钢筋,可以避免该类构件在极限状态下发生双折线形的脆性破坏现象,并改善开裂状态下构件的裂缝性能和延性性能。
    1 单向板的普通钢筋最小面积
    本规范对钢筋混凝土受弯构件,规定最小配筋率为0.2%和45ft/fy中的较大值。美国通过试验认为,在无粘结预应力受弯构件的受拉区至少应配置从受拉边缘至毛截面重心之间面积0.4%的普通钢筋。综合上述两方面的规定和研究成果,并结合以往的设计经验,作出了本规范对无粘结预应力混凝土板受拉区普通钢筋最小配筋率的限制。
    2 梁正弯矩区普通钢筋的最小面积
    无粘结预应力梁的试验表明,为了改善构件在正常使用下的变形性能,应采用预应力筋及有粘结普通钢筋混合配筋方案。在全部配筋中,有粘结纵向普通钢筋的拉力占到承载力设计值Mu产生总拉力的25%或更多时,可更有效地改善无粘结预应力梁的性能,如裂缝分布、间距和宽度,以及变形性能,从而达到接近有粘结预应力梁的性能。本规范公式(10.1.15-2)是根据此比值要求,并考虑预应力筋及普通钢筋重心离截面受压区边缘纤维的距离hp、hs影响得出的。
    对按一级裂缝控制等级设计的无粘结预应力混凝土构件,根据试验研究结果,可仅配置比最小配筋率略大的非预应力普通钢筋,取ρmin等于0.003。 

10.1.16 对无粘结预应力混凝土板柱结构中的双向平板,所要求配置的普通钢筋分述如下:
    负弯矩区普通钢筋的配置。美国进行过1:3的九区格后张无粘结预应力平板的模型试验。结果表明,只要在柱宽及两侧各离柱边1.5~2倍的板厚范围内,配置占柱上板带横截面面积0.15%的普通钢筋,就能很好地控制和分散裂缝,并使柱带区域内的弯曲和剪切强度都能充分发挥出来。此外,这些钢筋应集中通过柱子和靠近柱子布置。钢筋的中到中间距应不超过300mm,而且每一方向应不少于4根钢筋。对通常的跨度,这些钢筋的总长度应等于跨度的1/3。我国进行的1:2无粘结部分预应力平板的试验也证实在上述柱面积范围内配置的钢筋是适当的。本规范根据公式(10.1.16-1),矩形板在长跨方向将布置更多的钢筋。
    正弯矩区普通钢筋的配置。在正弯矩区,双向板在使用荷载下按照抗裂验算边缘混凝土法向拉应力确定普通筋配置数量的规定,是参照美国ACI规范对双向板柱结构关于有粘结普通钢筋最小截面面积的规定,并结合国内多年来对该板按二级裂缝控制和配置有粘结普通钢筋的工程经验作出规定的。针对温度、收缩应力所需配置的普通钢筋应按本规范第9.1节的相关规定执行。
    在楼盖的边缘和拐角处,通过设置钢筋混凝土边梁,并考虑柱头剪切作用,将该梁的箍筋加密配置,可提高边柱和角柱节点的受冲切承载力。

10.1.17 本条规定了预应力混凝土构件的弯矩设计值不小于开裂弯矩,其目的是控制受拉钢筋总配筋量不能过少,使构件具有应有的延性,以防止预应力受弯构件开裂后的突然脆断。

9.7.1 预埋件的材料选择、锚筋与锚板的连接构造基本未作修改,工程实践证明是有效的。再次强调了禁止采用延性较差的冷加工钢筋作锚筋,而用HPB300钢筋代换了已淘汰的HPB235钢筋。锚板厚度与实际受力情况有关,宜通过计算确定。

9.7.2 承受剪力的预埋件,其受剪承载力与混凝土强度等级、锚筋抗拉强度、面积和直径等有关。在保证锚筋锚固长度和锚筋到构件边缘合理距离的前提下,根据试验研究结果提出了确定锚筋截面面积的半理论半经验公式。其中通过系数αr考虑了锚筋排数的影响;通过系数αv考虑了锚筋直径以及混凝土抗压强度与锚筋抗拉强度比值fc/fy的影响。承受法向拉力的预埋件,其钢板一般都将产生弯曲变形。这时,锚筋不仅承受拉力,还承受钢板弯曲变形引起的剪力,使锚筋处于复合受力状态。通过折减系数αb考虑了锚板弯曲变形的影响。
    承受拉力和剪力以及拉力和弯矩的预埋件,根据试验研究结果,锚筋承载力均可按线性的相关关系处理。
    只承受剪力和弯矩的预埋件,根据试验结果,当V/Vu0>0.7时,取剪弯承载力线性相关;当V/Vu0≤0.7时,可按受剪承载力与受弯承载力不相关处理。其Vu0为预埋件单独受剪时的承载力。
    承受剪力、压力和弯矩的预埋件,其锚筋截面面积计算公式偏于安全。由于当N<0.5fcA时,可近似取M-0.4Nz=0作为压剪承载力和压弯剪承载力计算的界限条件,故本条相应的计算公式即以N≤0.5fcA为前提条件。本条公式不等式右侧第一项中的系数0.3反映了压力对预埋件抗剪能力的影响程度。与试验结果相比,其取值偏安全。
    在承受法向拉力和弯矩的锚筋截面面积计算公式中,对拉力项的抗力均乘了折减系数0.8,这是考虑到预埋件的重要性和受力的复杂性,而对承受拉力这种更不利的受力状态,采取了提高安全储备的措施。
    对有抗震要求的重要预埋件,不宜采用以锚固钢筋承力的形式,而宜采用锚筋穿透截面后,固定在背面锚板上的夹板式双面锚固形式。

9.7.3 受剪预埋件弯折锚筋面积计算同原规范。
    当预埋件由对称于受力方向布置的直锚筋和弯折锚筋共同承受剪力时,所需弯折锚筋的截面面积可由下式计算:

Ash≥(1.1V-αvfyAs)/0.8fy

    上式意味着从作用剪力中减去由直锚筋承担的剪力即为需要由弯折锚筋承担的剪力。上式经调整后即为本条公式。根据国外有关规范和国内对钢与混凝土组合结构中弯折锚筋的试验结果,弯折锚筋的角度对受剪承载力影响不大。考虑到工程中的一般做法,在本条注中给出弯折钢筋的角度宜取在15°~45°之间。在这一弯折角度范围内,可按上式计算锚筋截面面积,而不需对锚筋抗拉强度作进一步折减。上式中乘在作用剪力项上的系数1.1是考虑直锚筋与弯折锚筋共同工作时的不均匀系数0.9的倒数。预埋件可以只设弯折钢筋来承担剪力,此时可不设或只按构造设置直锚筋,并在计算公式中取As=0。

9.7.4 预埋件中锚筋的布置不能太密集,否则影响锚固受力的效果。同时为了预埋件的承载受力,还必须保证锚筋的锚固长度以及位置。本条对不同受力状态的预埋件锚筋的构造要求作出规定,同原规范。

9.7.5 为了达到节约材料、方便施工、避免外露金属件引起耐久性问题,预制构件的吊装方式宜优先选择内埋式螺母、内埋式吊杆或吊装孔。根据国内外的工程经验,采用这些吊装方式比传统的预埋吊环施工方便,吊装可靠,不造成耐久性问题。内埋式吊具已有专门技术和配套产品,根据情况选用。

9.7.6 确定吊环钢筋所需面积时,钢筋的抗拉强度设计值应乘以折减系数。在折减系数中考虑的因素有:构件自重荷载分项系数取为1.2,吸附作用引起的超载系数取为1.2,钢筋弯折后的 应力集中对强度的折减系数取为1.4,动力系数取为1.5,钢丝绳角度对吊环承载力的影响系数取为1.4,于是,当取HPB300级钢筋的抗拉强度设计值为fy=270N/mm2时,吊环钢筋实际取用的允许拉应力值约为65N/mm2
    作用于吊环的荷载应根据实际情况确定,一般为构件自重、悬挂设备自重及活荷载。吊环截面应力验算时,荷载取标准值。
    由于本次局部修订将HPB300钢筋的直径限于不大于14mm,因此当吊环直径小于等于14mm时,可以采用HPB300钢筋;当吊环直径大于14mm时,可采用Q235B圆钢,其材料性能应符合现行国家标准《碳素结构钢》GB/T 700的规定。 
    根据耐久性要求,恶劣环境下吊环钢筋或圆钢绑扎接触配筋骨架时应隔垫绝缘材料或采取可靠的防锈措施。

9.7.7 预制构件吊点位置的选择应考虑吊装可靠、平稳。吊装着力点的受力区域应作局部承载验算,以确保安全,同时避免产生引起构件裂缝或过大变形的内力。

    根据节能、减耗、环保的要求及建筑产业化的发展,更多的建筑工程量将转为以工厂构件化生产产品的形式制作,再运输到现场完成原位安装、连接的施工。混凝土预制构件及装配式结构将通过技术进步,产品升级而得到发展。

9.6.1 本条提出了装配式结构的设计原则:根据结构方案和传力途径进行内力分析及构件设计;保证连接处的传力性能;考虑不同阶段成形的影响;满足综合功能的需要。为满足预制构件工厂化批量生产和标准化的要求,标准设计时应考虑构件尺寸的模数化、使用荷载的系列化和构造措施的统一规定。

9.6.2 预制构件应按脱模起吊、运输码放、安装就位等工况及相应的计算简图分别进行施工阶段验算。本条给出了不同工况下的设计条件及动力系数。

9.6.3 本条提出装配式结构连接构造的原则:装配整体式结构中的接头应能传递结构整体分析所确定的内力。对传递内力较大的装配整体式连接,宜采用机械连接的形式。当采用焊接连接的形式时,应考虑焊接应力对接头的不利影响。
    不考虑传递内力的一般装配式结构接头,也应有可靠的固定连接措施,例如预制板、墙与支承构件的焊接或螺栓连接等。

9.6.4 为实现装配整体式结构的整体受力性能,提出了对不同预制构件纵向受力钢筋连接及混凝土拼缝灌筑的构造要求。其中整体装配的梁、柱,其受力钢筋的连接应采用机械连接、焊接的方式;墙、板可以搭接;混凝土拼缝应作粗糙处理以能传递剪力并协调变形。
    各种装配连接的构造措施,在标准设计及构造手册中多有表达,可以参考。

9.6.5、9.6.6 根据我国长期的工程实践经验,提出了房屋结构中大量应用的装配式楼盖(包括屋盖)加强整体性的构造措施。包括齿槽形板侧、拼缝灌筑、板端互连、与支承结构的连接、板间后浇带、板端负弯矩钢筋等加强楼盖整体性的构造措施。工程实践表明,这些措施对于加强楼盖的整体性是有效的。《建筑物抗震构造详图》G 329及有关标准图对此有详细的规定,可以参考。
    高层建筑楼盖,当采用预制装配式时,应设置钢筋混凝土现浇层,具体要求应根据《高层建筑混凝土结构技术规程》JGJ 3的规定进行设计。

9.6.7 为形成结构整体受力,对预制墙板及与周边构件的连接构造提出要求。包括与相邻墙体及楼板的钢筋连接、灌缝混凝土、边缘构件加强等措施。

9.6.8 本条为新增条文,阐述非承重预制构件的设计原则。灾害及事故表明,传力体系以外仅承受自重等荷载的非结构预制构件,也应进行构件及构件连接的设计,以避免影响结构受力,甚至坠落伤人。此类构件及连接的设计原则为:承载安全、适应变形、有冗余约束、满足建筑功能以及耐久性要求等。

    预制(既有)-现浇叠合式构件的特点是两阶段成形,两阶段受力。第一阶段可为预制构件,也可为既有结构;第二阶段则为后续配筋、浇筑而形成整体的叠合混凝土构件。叠合构件兼有预制装配和整体现浇的优点,也常用于既有结构的加固,对于水平的受弯构件(梁、板)及竖向的受压构件(柱、墙)均适用。
    叠合构件主要用于装配整体式结构,其原则也适用于对既有结构进行重新设计。基于上述原因及建筑产业化趋势,近年国内外叠合结构的发展很快,是一种有前途的结构形式。

(Ⅰ)水平叠合构件

9.5.1 后浇混凝土高度不足全高的40%的叠合式受弯构件,由于底部较薄,施工时应有可靠的支撑,使预制构件在二次成形浇筑混凝土的重量及施工荷载下,不至于发生影响内力的变形。有支撑二次成形的叠合构件按整体受弯构件设计计算。
    施工阶段无支撑的叠合式受弯构件,二次成形浇筑混凝土的重量及施工荷载的作用影响了构件的内力和变形。应根据附录H的有关规定按二阶段受力的叠合构件进行设计计算。

9.5.2 对一阶段采用预制梁、板的叠合受弯构件,提出了叠合受力的构造要求。主要是后浇叠合层混凝土的厚度;混凝土强度等级;叠合面粗糙度;界面构造钢筋等。这些要求是保证界面两侧混凝土共同承载、协调受力的必要条件。当预制板为预应力板时,由于预应力造成的反拱、徐变的影响,宜设置界面构造钢筋加强其整体性。

9.5.3 在既有结构上配筋、浇筑混凝土而成形的叠合受弯构件,将在结构加固、改建中得到越来越广泛的应用。其可根据二阶段受力叠合受弯构件的原理进行设计。设计时应考虑既有结构的承载历史、实测评估的材料性能、施工时支撑对既有结构卸载的具体情况,根据本规范第3.3节、第3.7节的规定确定设计参数及荷载组合进行设计。
    对于叠合面可采取剔凿、植筋等方法加强叠合面两侧混凝土的共同受力。

(Ⅱ)竖向叠合构件

9.5.4 二阶段成形的竖向叠合柱、墙,当第一阶段为预制构件时,应根据具体情况进行施工阶段验算;使用阶段则按整体构件进行设计。

9.5.6 本条是根据对既有结构再设计的工程实践及经验,对叠合受压构件中的既有构件及后浇部分构件,提出了根据具体工程情况确定承载力及材料协调受力相应折减系数的原则。
    考虑既有构件的承载历史及施工卸载条件,确定承载力计算的原则:考虑实测结构既有构件的几何形状变化以及材料的实际状况,经统计、分析确定相应的设计参数。结构后加部分材料强度按本规范确定,但考虑协调受力对强度利用的影响,应乘小于1的修正系数并应根据施工支顶等卸载情况适当增减。

9.5.7 根据工程实践及经验,提出了满足两部分协调受力的构造措施。竖向叠合柱、墙的基本构造要求包括后浇层的厚度、混凝土强度等级、叠合面粗糙度、界面构造钢筋、后浇层中的配筋及锚固连接等,这是叠合界面两侧的共同受力的必要条件。

(Ⅰ)柱

9.3.1 本条规定了柱中纵向钢筋(包括受力钢筋及构造钢筋)的基本构造要求。
    柱宜采用大直径钢筋作纵向受力钢筋。配筋过多的柱在长期受压混凝土徐变后卸载,钢筋弹性回复会在柱中引起横裂,故应对柱最大配筋率作出限制。
    对圆柱提出了最低钢筋数量以及均匀配筋的要求,但当圆柱作方向性配筋时不在此例。
    此外还规定了柱中纵向钢筋的间距。间距过密影响混凝土浇筑密实;过疏则难以维持对芯部混凝土的围箍约束。同样,柱侧构造筋及相应的复合箍筋或拉筋也是为了维持对芯部混凝土的约束。

9.3.2 柱中配置箍筋的作用是为了架立纵向钢筋;承担剪力和扭矩;并与纵筋一起形成对芯部混凝土的围箍约束。为此对柱的配箍提出系统的构造措施,包括直径、间距、数量、形式等。
    为保持对柱中混凝土的围箍约束作用,柱周边箍筋应做成封闭式。对圆柱及配筋率较大的柱,还对箍筋提出了更严格的要求:末端135°弯钩,且弯后余长不小于5d(或10d),且应勾住纵筋。对纵筋较多的情况,为防止受压屈曲还提出设置复合箍筋的要求。
    采用焊接封闭环式箍筋、连续螺旋箍筋或连续复合螺旋箍筋,都可以有效地增强对柱芯部混凝土的围箍约束而提高承载力。当考虑其间接配筋的作用时,对其配箍的最大间距作出限制。但间距也不能太密,以免影响混凝土的浇筑施工。
    对连续螺旋箍筋、焊接封闭环式箍筋或连续复合螺旋箍筋,已有成熟的工艺和设备。施工中采用预制的专用产品,可以保证应有的质量。 

9.3.3 对承载较大的I形截面柱的配筋构造提出要求,包括翼缘、腹板的厚度;以及腹板开孔时的配筋构造要求。基本同原规范的要求。

(Ⅱ)梁柱节点

9.3.4 本条为框架中间层端节点的配筋构造要求。
    在框架中间层端节点处,根据柱截面高度和钢筋直径,梁上部纵向钢筋可以采用直线的锚固方式。
    试验研究表明,当柱截面高度不足以容纳直线锚固段时,可采用带90°弯折段的锚固方式。这种锚固端的锚固力由水平段的粘结锚固和弯弧-垂直段的挤压锚固作用组成。规范强调此时梁筋应伸到柱对边再向下弯折。在承受静力荷载为主的情况下,水平段的粘结能力起主导作用。当水平段投影长度不小于0.4lab,弯弧-垂直段投影长度为15d时,已能可靠保证梁筋的锚固强度和抗滑移刚度。
    本次修订还增加了采用筋端加锚头的机械锚固方法,以提高锚固效果,减少锚固长度。但要求锚固钢筋在伸到柱对边柱纵向钢筋的内侧,以增大锚固力。有关的试验研究表明,这种做法有效,而且施工比较方便。
    规范还规定了框架梁下部纵向钢筋在端节点处的锚固要求。

9.3.5 本条为框架中间层中间节点梁纵筋的配筋构造要求。
    中间层中间节点的梁下部纵向钢筋,修订提出了宜贯穿节点与支座的要求,当需要锚固时其在节点中的锚固要求仍沿用原规范有关梁纵向钢筋在不同受力情况下锚固的规定。中间层端节点、顶层中间节点以及顶层端节点处的梁下部纵向钢筋,也可按同样的方法锚固。
    由于设计、施工不便,不提倡原规范梁钢筋在节点中弯折锚固的做法。
    当梁的下部钢筋根数较多,且分别从两侧锚入中间节点时,将造成节点下部钢筋过分拥挤。故也可将中间节点下部梁的纵向钢筋贯穿节点,并在节点以外搭接。搭接的位置宜在节点以外梁弯矩较小的1.5h0以外,这是为了避让梁端塑性铰区和箍筋加密区。
    当中间层中间节点左、右跨梁的上表面不在同一标高时,左、右跨梁的上部钢筋可分别锚固在节点内。当中间层中间节点左、右梁端上部钢筋用量相差较大时,除左、右数量相同的部分贯穿节点外,多余的梁筋亦可锚固在节点内。

9.3.6 本条为框架顶层中节点柱纵筋的配筋构造要求。
    伸入顶层中间节点的全部柱筋及伸入顶层端节点的内侧柱筋应可靠锚固在节点内。规范强调柱筋应伸至柱顶。当顶层节点高度不足以容纳柱筋直线锚固长度时,柱筋可在柱顶向节点内弯折;或在有现浇板且板厚大于100mm时可向节点外弯折,锚固于板内。试验研究表明,当充分利用柱筋的受拉强度时,其锚固条件不如水平钢筋,因此在柱筋弯折前的竖向锚固长度不应小于0.5lab,弯折后的水平投影长度不宜小于12d,以保证可靠受力。
    本次修订还增加了采用机械锚固锚头的方法,以提高锚固效果,减少锚固长度。但要求柱纵向钢筋应伸到柱顶以增大锚固力。有关的试验研究表明,这种做法有效,而且方便施工。

9.3.7 本条为框架顶层端节点钢筋搭接连接的构造要求。
    在承受以静力荷载为主的框架中,顶层端节点处的梁、柱端均主要承受负弯矩作用,相当于90°的折梁。当梁上部钢筋和柱外侧钢筋数量匹配时,可将柱外侧处于梁截面宽度内的纵向钢筋直接弯入梁上部,作梁负弯矩钢筋使用。也可使梁上部钢筋与柱外侧钢筋在顶层端节点区域搭接。
    规范推荐了两种搭接方案。其中设在节点外侧和梁端顶面的带90°弯折搭接做法适用于梁上部钢筋和柱外侧钢筋数量不致过多的民用或公共建筑框架。其优点是梁上部钢筋不伸入柱内,有利于在梁底标高处设置柱内混凝土的施工缝。
    但当梁上部和柱外侧钢筋数量过多时,该方案将造成节点顶部钢筋拥挤,不利于自上而下浇筑混凝土。此时,宜改用梁、柱钢筋直线搭接,接头位于柱顶部外侧。
    本次修订还增加了梁、柱截面较大而钢筋相对较细时,钢筋搭接连接的方法。
    在顶层端节点处,节点外侧钢筋不是锚固受力,而属于搭接传力向题。故不允许采用将柱筋伸至柱顶,而将梁上部钢筋锚入节点的做法。因这种做法无法保证梁、柱钢筋在节点区的搭接传力,使梁、柱端钢筋无法发挥出所需的正截面受弯承载力。

9.3.8 本条为框架顶层端节点的配筋面积、纵筋弯弧及防裂钢筋等的构造要求。
    试验研究表明,当梁上部和柱外侧钢筋配筋率过高时,将引起顶层端节点核心区混凝土的斜压破坏,故对相应的配筋率作出限制。
    试验研究还表明,当梁上部钢筋和柱外侧纵向钢筋在顶层端节点角部的弯弧处半径过小时,弯弧内的混凝土可能发生局部受压破坏,故对钢筋的弯弧半径最小值作了相应规定。框架角节点钢筋弯弧以外,可能形成保护层很厚的素混凝土区域,应配构造钢筋加以约束,防止混凝土裂缝、坠落。

9.3.9 本条为框架节点中配箍的构造要求。根据我国工程经验并参考国外有关规范,在框架节点内应设置水平箍筋。当节点四边有梁时,由于除四角以外的节点周边柱纵向钢筋已经不存在过早压屈的危险,故可以不设复合箍筋。

(Ⅲ)牛腿

9.3.10 本条为对牛腿截面尺寸的控制。
    牛腿(短悬臂)的受力特征可以用由顶部水平的纵向受力钢筋作为拉杆和牛腿内的混凝土斜压杆组成的简化三角桁架模型描述。竖向荷载将由水平拉杆的拉力和斜压杆的压力承担;作用在牛腿顶部向外的水平拉力则由水平拉杆承担。
    牛腿要求不致因斜压杆压力较大而出现斜压裂缝,故其截面尺寸通常以不出现斜裂缝为条件,即由本条的计算公式控制,并通过公式中的裂缝控制系数β考虑不同使用条件对牛腿的不同抗裂要求。公式中的(1-0.5Fhk/Fvk)项是按牛腿在竖向力和水平拉力共同作用下斜裂缝宽度不超过0.1mm为条件确定的。
    符合本条计算公式要求的牛腿不需再作受剪承载力验算。这是因为通过在a/h0<0.3时取a/h0=0.3,以及控制牛腿上部水平钢筋的最大配筋率,已能保证牛腿具有足够的受剪承载力。
    在计算公式中还对沿下柱边的牛腿截面有效高度h0作出限制。这是考虑当斜角α大于45°时,牛腿的实际有效高度不会随α的增大而进一步增大。

9.3.11 本条为牛腿纵向受力钢筋的计算。规定了承受竖向力的受拉钢筋及承受水平力的锚固钢筋的计算方法,同原规范的规定。

9.3.12 承受动力荷载牛腿的纵向受力钢筋宜采用延性较好的牌号为HRB的热轧带肋钢筋。本条明确规定了牛腿上部纵向受拉钢筋伸入柱内的锚固要求,以及当牛腿设在柱顶时,为了保证牛腿顶面受拉钢筋与柱外侧纵向钢筋的可靠传力而应采取的构造措施。

9.3.13 牛腿中应配置水平箍筋,特别是在牛腿上部配置一定数量的水平箍筋,能有效地减少在该部位过早出现斜裂缝的可能性。在牛腿内设置一定数量的弯起钢筋是我国工程界的传统做法。但试验表明,它对提高牛腿的受剪承载力和减少斜向开裂的可能性都不起明显作用,故适度减少了弯起钢筋的数量。 

(Ⅰ)纵向配筋

9.2.1 根据长期工程实践经验,为了保证混凝土浇筑质量,提出梁内纵向钢筋数量、直径及布置的构造要求,基本同原规范的规定。提出了当配筋过于密集时,可以采用并筋的配筋形式。

9.2.2 对于混合结构房屋中支承在砌体、垫块等简支支座上的钢筋混凝土梁,或预制钢筋混凝土梁的简支支座,给出了在支座处纵向钢筋锚固的要求以及在支座范围内配箍的规定。与原规范相同。工程实践证明,这些措施是有效的。

9.2.3 在连续梁和框架梁的跨内,支座负弯矩受拉钢筋在向跨内延伸时,可根据弯矩图在适当部位截断。当梁端作用剪力较大时,在支座负弯矩钢筋的延伸区段范围内将形成由负弯矩引起的垂直裂缝和斜裂缝,并可能在斜裂缝区前端沿该钢筋形成劈裂裂缝,使纵筋拉应力由于斜弯作用和粘结退化而增大,并使钢筋受拉范围相应向跨中扩展。因此钢筋混凝土梁的支座负弯矩纵向受力钢筋(梁上部钢筋)不宜在受拉区截断。
    国内外试验研究结果表明,为了使负弯矩钢筋的截断不影响它在各截面中发挥所需的抗弯能力,应通过两个条件控制负弯矩钢筋的截断点。第一个控制条件(即从不需要该批钢筋的截面伸出的长度)是使该批钢筋截断后,继续前伸的钢筋能保证通过截断点的斜截面具有足够的受弯承载力;第二个控制条件(即从充分利用截面向前伸出的长度)是使负弯矩钢筋在梁顶部的特定锚固条件下具有必要的锚固长度。根据对分批截断负弯矩纵向钢筋时钢筋延伸区段受力状态的实测结果,规范作出了上述规定。
    当梁端作用剪力较小(V≤0.7ftbh0)时,控制钢筋截断点位置的两个条件仍按无斜向开裂的条件取用。 
    当梁端作用剪力较大(V>0.7ftbh0),且负弯矩区相对长度不大时,规范给出的第二控制条件可继续使用;第一控制条件从不需要该钢筋截面伸出长度不小于20d的基础上,增加了同时不小于h0的要求。
    若负弯矩区相对长度较大,按以上二条件确定的截断点仍位于与支座最大负弯矩对应的负弯矩受拉区内时,延伸长度应进一步增大。增大后的延伸长度分别为自充分利用截面伸出长度,以及自不需要该批钢筋的截面伸出长度,在两者中取较大值。

9.2.4 由于悬臂梁剪力较大且全长承受负弯矩,“斜弯作用”及“沿筋劈裂”引起的受力状态更为不利。试验表明,在作用剪力较大的悬臂梁内,因梁全长受负弯矩作用,临界斜裂缝的倾角明显较小,因此悬臂梁的负弯矩纵向受力钢筋不宜切断,而应按弯矩图分批下弯,且必须有不少于2根上部钢筋伸至梁端,并向下弯折锚固。

9.2.5 梁中受扭纵向钢筋最小配筋率的要求,是以纯扭构件受扭承载力和剪扭条件下不需进行承载力计算而仅按构造配筋的控制条件为基础拟合给出的。本条还给出了受扭纵向钢筋沿截面周边的布置原则和在支座处的锚固要求。对箱形截面构件,偏安全地采用了与实心载面构件相同的构造要求。

9.2.6 根据工程经验给出了在按简支计算但实际受有部分约束的梁端上部,为避免负弯矩裂缝而配置纵向钢筋的构造规定;还对梁架立筋的直径作出了规定。

(Ⅱ)横向配筋

9.2.7 梁的受剪承载力宜由箍筋承担。梁的角部钢筋应通长设置,不仅为方便配筋,而且加强了对芯部混凝土的围箍约束。当采用弯筋承剪时,对其应用条件和构造要求作出了规定,与原规范相同。

9.2.8 利用弯矩图确定弯起钢筋的布置(弯起点或弯终点位置、角度、锚固长度等)是我国传统设计的方法,工程实践表明有关弯起钢筋的构造要求是有效的,故维持不变。

9.2.9 对梁的箍筋配置构造要求作出了规定,包括在不同受力条件下配箍的直径、间距、范围、形式等。维持原版规范的规定不变,仅合并统一表达。开口箍不利于纵向钢筋的定位,且不能约束芯部混凝土。故除小过梁以外,一般构件不应采用开口箍。

9.2.10 梁内弯剪扭箍筋的构造要求与原规范相同,工程实践证明是可行的。

(Ⅲ)局部配筋

9.2.11 本条为梁腰集中荷载作用处附加横向配筋的构造要求。
    当集中荷载在梁高范围内或梁下部传入时,为防止集中荷载影响区下部混凝土的撕裂及裂缝,并弥补间接加载导致的梁斜截面受剪承载力降低,应在集中荷载影响区s范围内配置附加横向钢筋。试验研究表明,当梁受剪箍筋配筋率满足要求时,由本条公式计算确定的附加横向钢筋能较好发挥承剪作用,并限制斜裂缝及局部受拉裂缝的宽度。
    在设计中,不允许用布置在集中荷载影响区内的受剪箍筋代替附加横向钢筋。此外,当传入集中力的次梁宽度b过大时,宜适当减小由3b+2hl所确定的附加横向钢筋的布置宽度。当梁下部作用有均布荷载时,可参照本规范计算深梁下部配置悬吊钢筋的方法确定附加悬吊钢筋的数量。
    当有两个沿梁长度方向相互距离较小的集中荷载作用于梁高范围内时,可能形成一个总的撕裂效应和撕裂破坏面。偏安全的做法是,在不减少两个集中荷载之间应配附加钢筋数量的同时,分别适当增大两个集中荷载作用点以外附加横向钢筋的数量。
    还应该说明的是:当采用弯起钢筋作附加钢筋时,明确规定公式中的Asv应为左右弯起段截面面积之和;弯起式附加钢筋的弯起段应伸至梁上边缘,且其尾部应按规定设置水平锚固段。

9.2.12 本条为折梁的配筋构造要求。对受拉区有内折角的梁,梁底的纵向受拉钢筋应伸至对边并在受压区锚固。受压区范围可按计算的实际受压区高度确定。直线锚固应符合本规范第8.3节钢筋锚固的规定;弯折锚固则参考本规范第9.3节点内弯折锚固的做法。

9.2.13 本条提出了大尺寸梁腹板内配置腰筋的构造要求。
    现代混凝土构件的尺度越来越大,工程中大截面尺寸现浇混凝土梁日益增多。由于配筋较少,往往在梁腹板范围内的侧面产生垂直于梁轴线的收缩裂缝。为此,应在大尺寸梁的两侧沿梁长度方向布置纵向构造钢筋(腰筋),以控制裂缝。根据工程经验,对腰筋的最大间距和最小配筋率给出了相应的配筋构造要求。腰筋的最小配筋率按扣除了受压及受拉翼缘的梁腹板截面面积确定。

9.2.14 本条规定了薄腹梁及需作疲劳验算的梁,加强下部纵向钢筋的构造措施。与02版规范相同,工程实践证明是可行的。

9.2.15 本条参考欧洲规范EN1992-1-1:2004的有关规定,为防止表层混凝土碎裂、坠落和控制裂缝宽度,提出了在厚保护层混凝土梁下部配置表层分布钢筋(表层钢筋)的构造要求。表层分布钢筋宜采用焊接网片。其混凝土保护层厚度可按第8.2.3条减小为25mm,但应采取有效的定位、绝缘措施。

9.2.16 深受弯构件(包括深梁)是梁的特殊类型,在承受重型荷载的现代混凝土结构中得到越来越广泛的应用,其内力及设计方法与一般梁有显著差别。本条为引导性条文,具体设计方法见本规范附录G。