10.1.1 消声与隔振的设计原则。
供暖、通风与空调系统产生的噪声与振动,只是建筑中噪声和振动源的一部分。当系统产生的噪声和振动影响到工艺和使用的要求时,就应根据工艺和使用要求,也就是各自的允许噪声标准及对振动的限制,系统的噪声和振动的频率特性及其传播方式(空气传播或固体传播)等进行消声与隔振设计,并应做到技术经济合理。
10.1.2 室内及环境噪声标准。
室内和环境噪声标准是消声设计的重要依据。因此本条规定由供暖、通风和空调系统产生的噪声传播至使用房间和周围环境的噪声级,应满足国家现行《工业企业噪声控制设计规范》GBJ 87、《民用建筑隔声设计规范》GB 50118、《声环境质量标准》GB 3096和《工业企业厂界噪声标准》GB 12348等标准的要求。
10.1.3 振动控制设计标准。
振动对人体健康的危害是很严重的,在暖通空调系统中振动问题也是相当严重的。因此本条规定了振动控制设计应满足国家现行《城市区域环境振动标准》GB 10070等标准的要求。
10.1.4 降低风系统噪声的措施。
本条规定了降低风系统噪声应注意的事项。系统设计安装了消声器,其消声效果也很好,但经消声处理后的风管又穿过高噪声房间,再次被污染,又回复到了原来的噪声水平,最终不能起到消声作用,这个问题,过去往往被人们忽视。同样道理,噪声高的风管穿过要求噪声低的房间时,它也会污染低噪声房间,使其达不到要求。因此,对这两种情况必须引起重视。当然,必须穿过时还是允许的,但应对风管进行良好的隔声处理,以避免上述两种情况发生。
10.1.5 风管内的风速。
通风机与消声装置之间的风管,其风道无特殊要求时,可按经济流速采用即可。根据国内外有关资料介绍,经济流速6m/s~13m/s,本条推荐采用的8m/s~10m/s在经济流速的范围内。
消声装置与房间之间的风管,其空气流速不宜过大,因为风速增大,会引起系统内气流噪声和管壁振动加大,风速增加到一定值后,产生的气流再生噪声甚至会超过消声装置后的计算声压级;风管内的风速也不宜过小,否则会使风管的截面积增大,既耗费材料又占用较大的建筑空间,这也是不合理的。因此,本条给出了适应四种室内允许噪声级的主管和支管的风速范围。
10.1.6 机房位置及噪声源的控制。
通风、空调与制冷机房是产生噪声和振动的地方,是噪声和振动的发源处,其位置应尽量不靠近有较高防振和消声要求的房间,否则对周围环境影响颇大。
通风、空调与制冷系统运行时,机房内会产生相当高的噪声,一般为80dB(A)~100dB(A),甚至更高,远远超过环境噪声标准的要求。为了防止对相邻房间和周围环境的干扰,本条规定了噪声源位置在靠近有较高隔振和消声要求的房间时,必须采取有效措施。这些措施是在噪声和振动传播的途径上对其加以控制。为了防止机房内噪声源通过空气传声和固体传声对周围环境的影响,设计中应首先考虑采取把声源和振源控制在局部范围内的隔声与隔振措施,如采用实心墙体、密封门窗、堵塞空洞和设置隔振器等,这样做仍达不到要求时,再辅以降低声源噪声的吸声措施。大量实践证明,这样做是简单易行、经济合理的。
10.1.7 室外设备噪声控制。
对露天布置的通风、空调和制冷设备及其附属设备如冷却塔、空气源冷(热)水机组等,其噪声达不到环境噪声标准要求时,亦应采取有效的降噪措施,如在其进、排风口设置消声设备,或在其周围设置隔声屏障等。
分类:民用建筑供暖通风与空气调节设计规范[附条文说明] GB 50736-2012
9.5 空调冷热源及其水系统的检测与监控
9.5.1 空调冷热源和空调水系统的检测点。
冷热源和空调水系统应设置的检测点,为最低要求。设计时应根据系统设置加以确定。
9.5.2 蓄冷、蓄热系统的检测点。
蓄冷(热)系统设置检测点的最低要求。设计时应根据系统设置加以确定。
9.5.3 冷水机组水系统的控制方式及连锁。
许多工程采用的是总回水温度来控制,但由于冷水机组的最高效率点通常位于该机组的某一部分负荷区域,因此采用冷量控制的方式比采用温度控制的方式更有利于冷水机组在高效率区域运行而节能,是目前最合理和节能的控制方式。但是,由于计量冷量的元器件和设备价格较高,因此推荐在有条件时(如采用了DDC控制系统时),优先采用此方式。同时,台数控制的基本原则是:①让设备尽可能处于高效运行;②让相同型号的设备的运行时间尽量接近以保持其同样的运行寿命(通常优先启动累计运行小时数最少的设备);③满足用户侧低负荷运行的需求。
由于制冷机运行时,一定要保证它的蒸发器和冷凝器有足够的水量流过。为达到这一目的,制冷机水系统中其他设备,包括电动水阀冷冻水泵、冷却水泵、冷却塔风机等应先于制冷机开机运行,停机则应按相反顺序进行。通常通过水流开关检测与冷机相连锁的水泵状态,即确认水流开关接通后才允许制冷机启动。
9.5.4 冰蓄冷系统二次冷媒侧换热器的防冻保护。
一般空调系统夜间负荷往往很小,甚至处在停运状态,而冰蓄冷系统主要在夜间电网低谷期进行蓄冰。因此,在二者进行换热的板换处,由于空调系统的水侧冷水基本不流动,如果乙二醇侧的制冰低温传递过来,易引起另一侧水的冻结,造成板换的冻裂破坏。因此,必须随时观察板换处乙二醇侧的溶液温度,调节好有关电动调节阀的开度,防止事故发生。
9.5.6 水泵运行台数及变速控制。
二级泵和多级泵空调水系统中二级泵等负荷侧各级水泵运行台数宜采用流量控制方式;水泵变速宜根据系统压差变化控制,系统压差测点宜设在最不利环路干管靠近末端处;负荷侧多级泵变速宜根据用户侧压差变化控制,压差测点宜设在用户侧支管靠近末端处。
9.5.7 变流量一级泵系统水泵变流量运行时,空调水系统的控制。
精确控制流量和降低水流量变化速率的控制措施包括:
1)应采用高精度的流量或压差测定装置;
2)冷水机组的电动隔断阀应选择“慢开”型;
3)旁通阀的流量特性应选择线性;
4)负荷侧多台设备的启停时间宜错开,设备盘管的水阀应选择“慢开”型。
9.5.8 空调冷却水系统基本的控制要求。
从节能的观点来看,较低的冷却水进水温度有利于提高冷水机组的能效比,因此尽可能降低冷却水温对于节能是有利的。但为了保证冷水机组能够正常运行,提高系统运行的可靠性,通常冷却水进水温度有最低水温限制的要求。为此,必须采取一定的冷却水水温控制措施。通常有三种做法:①调节冷却塔风机运行台数;②调节冷却塔风机转速;③当室外气温很低,即使停开风机也不能满足最低水温要求时,可在供、回水总管上设置旁通电动阀,通过调节旁通流量保证进入冷水机组的冷却水温高于最低限值。在①、②两种方式中,冷却塔风机的运行总能耗也得以降低。而③方式可控制进入冷水机组的冷却水温度在设定范围内,是冷水机组的一种保护措施。
冷却水系统在使用时,由于水分的不断蒸发,水中的离子浓度会越来越大。为了防止由于高离子浓度带来的结垢等种种弊病,必须及时排污。排污方法通常有定期排污和控制离子浓度排污。这两种方法都可以采用自动控制方法,其中控制离子浓度排污方法在使用效果与节能方面具有明显优点。
9.5.9 集中监控系统与冷水机组控制器之间的通信要求。
冷水机组控制器通信接口的设立,可使集中监控系统的中央主机系统能够监控冷水机组的运行参数以及使冷水系统能量管理更加合理。
9.4 空调系统的检测与监控
9.4.1 空调系统检测点。
本条给出了应设置的空调系统检测点,为最低要求。设计时应根据系统设置加以确定。
9.4.2 多工况运行方式。
多工况运行方式是指在不同的工况时,其调节系统(调节对象和执行机构等)的组成是变化的。以适应室内外热湿条件变化大的特点,达到节能的目的。工况的划分也要因系统的组成及处理方式的不同来改变,但总的原则是节能,尽量避免空气处理过程中的冷热抵消,充分利用新风和回风,缩短制冷机、加热器及加湿器的运行时间等,并根据各工况在一年中运行的累计小时数简化设计,以减少投资。多工况同常规系统运行区别,在于不仅要进行参数的控制,还要进行工况的转换。多工况的控制、转换可采用就地的逻辑控制系统或集中监控系统等方式实现,工况少时可采用手动转换实现。
利用执行机构的极限位置,空气参数的超限信号以及分程控制方式等自动转换方式,在运行多工况控制及转换程序时交替使用,可达到实时转换的目的。
9.4.3 优先控制和分程控制。
水冷式空气冷却器采用室内温度、湿度的高(低)值选择器控制冷水量,在国外是较常用的控制方案,国内也有工程采用。
所谓高(低)值选择控制,就是在水冷式空气冷却器工作的季节,根据室内温、湿度的超差情况,将温度、湿度调节器的输出信号分别输入到信号选择器内进行比较,选择器将根据比较后的高(低)值信号(只接受偏差大的为高值或只接受偏差小的为低值),自动控制调节阀改变进入水冷式空气冷却器的冷水量。
高(低)值选择器在以最不利的参数为基准,采用较大水量调节的时候,对另一个超差较小的参数,就会出现不是过冷就是过于干燥,也就是说如果冷水量是以温度为基准进行调节的,对于相对湿度调节来讲必然是调节过量,即相对湿度比给定值小;如果冷水量是以相对湿度为基准进行调节的,则温度就会出现比给定值低,要保证温湿度参数都满足要求,还需要对加热器或加湿器进行分程控制。
所谓对加热器或加湿器进行分程控制,以电动温湿度调节器为例,就是将其输出信号分为0~5mA和6mA~10mA两段,当采用高值选择时,其中6mA~10mA的信号控制空气冷却器的冷水量,而0~5mA一段信号去控制加热器和加湿器阀门,也就是说用一个调节器通过对两个执行器的零位调整进行分段控制,即温度调节器既可控制空气冷却器的阀门也可控制加热器的阀门,湿度调节器既可控制冷却器的阀门也可控制加湿器的阀门。
这里选择控制和分程控制是同时进行的,互为补充的,如果只进行高(低)值选择而不进行分程控制,其结果必然出现一个参数满足要求,另一个参数存在偏差。
9.4.4 全空气空调系统的控制。
1 根据设计原理,空调房间室温的控制应由送风温度和送风量的控制和调节来实现。定风量系统通过控制送风温度、变风量系统主要通过送风量的调节来保证。送风温度调节的通常手段是空气冷却器/加热器的水阀调节,对于二次回风系统和一次回风系统在过渡期也可通过调节新风和回风的比例来控制送风温度。变风量采用风机变速是最节能的方式。尽管风机变速的做法投资有一定增加,但对于采用变风量系统的工程而言,这点投资应该是有保证的,其节能所带来的效益能够较快地回收投资。
2 送风温度是空调系统中重要的设计参数,应采取必要措施保证其达到目标,有条件时进行优化调节。控制室温是空调系统需要实现的目标,根据室温实测值与目标值的偏差对送风温度设定值不断进行修正,对于调节对象纯滞后大、时间常数大或热、湿扰量大的场合更有利于控制系统反应快速、效果稳定。
4 当空调系统采用加湿处理时,也应进行加湿量控制。空调房间热湿负荷变化较小时,用恒定机器露点温度的方法可以使室内相对湿度稳定在某一范围内,如室内热湿负荷稳定,可达到相当高的控制精度。但对于室内热湿负荷或相对湿度变化大的场合,宜采用不恒定机器露点温度或不达到机器露点温度的方式,即用直接装在室内工作区、回风口或总回风管中的湿度敏感元件来测量和调节系统中的相应的执行调节机构达到控制室内相对湿度的目的。系统在运行中不恒定机器露点温度或不达到机器露点温度的程度是随室内热湿负荷的变化而变化的,对室内相对湿度是直接控制的,因此,室内散湿量变化较大时,其控制精度较高。然而对于多区系统这一方法仍不能满足各房间的不同条件,因此,在具体设计中应根据不同的实际要求,确定是否应按各房间的不同要求单独控制。
5 在条件合适的地区应充分利用全空气空调系统的优势,尽可能利用室外自然冷源,最大限度地利用新风降温,提高室内空气品质和人员的舒适度,降低能耗。利用新风免费供冷(增大新风比)工况的判别方法可采用固定温度法、温差法、固定焓法、电子焓法、焓差法等,根据建筑的气候分区进行选取,具体可参考ASHRAE标准90.1。从理论分析,采用焓差法的节能性最好,然而该方法需要同时检测温度和湿度,且湿度传感器误差大、故障率高,需要经常维护,数年来在国内、外的实施效果不够理想。而固定温度和温差法,在工程中实施最为简单方便。因此,对变新风比控制方法不做限定。
9.4.5 新风机组的控制。
应根据空调系统的设计需要进行控制。新风机组根据设计工况下承担室内湿负荷的多少,有不同的送风温度设计值:①一般情况下,配合风机盘管等空调房间内末端设备使用的新风系统,新风不负担室内主要冷热负荷时,各房间的室温控制主要由风机盘管满足,新风机组控制送风温度恒定即可。②当新风负担房间主要或全部冷负荷时,机组送风温度设定值应根据室内温度进行调节。③当新风负担室内潜热冷负荷即湿负荷时,送风温度应根据室内湿度设计值进行确定。
9.4.6 风机盘管的控制。
风机盘管的自动控制方式主要有两种:①带风机三速选择开关、可冬夏转换的室温控制器连动水路两通电动阀的自动控制配置;②带风机三速选择开关、可冬夏转换的室温控制器连动风机开停的自动控制配置。第一种方式,能够实现整个水系统的变水量调节。第二种方式,采用风机开停对室内温度进行控制,对于提高房间的舒适度和实现节能是不完善的,也不利于水系统运行的稳定性。因此从节能、水系统稳定性和舒适度出发,应按8.5.6条的要求采用第一种配置。采用常闭式水阀更有利于水系统的运行节能。
9.4.7 新风机组或空调机组的防冻保护控制。
位于冬季有冻结可能地区的新风机组或空调机组,应防止因某种原因热水盘管或其局部水流断流而造成冰冻的可能。通常的做法是在机组盘管的背风侧加设感温测头(通常为毛细管或其他类型测头),当其检测到盘管的背风侧温度低于某一设定值时,与该测头相连的防冻开关发出信号,机组即通过集中监控系统的控制器程序或电气设备的联动、连锁等方式运行防冻保护程序,例如:关新风门、停风机、开大热水阀,防止热水盘管冰冻面积进一步扩大。
9.4.8 冷热转换装置的设置。
变风量末端装置和风机盘管等实现各自服务区域的独立温度控制,当冬季、夏季分别运行加热和冷却工况时,要求改变末端装置的动作方向。例如,在冷却工况下,当房间温度降低时,变风量末端装置的风阀应向关小的位置调节;当房间温度升高时,再向开大的位置调节。在加热工况下,风阀的调节过程则相反。
为保证室内气流组织,送风口(包括散流器和喷口)也需根据冬夏季设置改变送风方向和风量的转换装置。
9.4.9 电加热器的连锁与保护。强制性条文。
要求电加热器与送风机连锁,是一种保护控制,可避免系统中因无风电加热器单独工作导致的火灾。为了进一步提高安全可靠性,还要求设无风断电、超温断电保护措施,例如,用监视风机运行的风压差开关信号及在电加热器后面设超温断电信号与风机启停连锁等方式,来保证电加热器的安全运行。
电加热器采取接地及剩余电流保护,可避免因漏电造成触电类的事故。
9.3 供暖通风系统的检测与监控
9.3.1 供暖系统的参数检测点。
本条给出了供暖系统应设置的参数检测点,为最低要求。设计时应根据系统设置加以确定。
9.3.3 通风系统的参数检测点。
本条给出了应设置的通风系统检测点,为最低要求。设计时应根据系统设置加以确定。
9.3.4 事故通风的通风机电器开关的设置。
本规范6.3.9第2款强制性规定,事故排风系统(包括兼做事故排风用的基本排风系统)的通风机,其手动开关位置应设在室内、外便于操作的地点,以便一旦发生紧急事故时,使其立即投入运行。
本规定要求通风机与事故探测器进行连锁,一旦发生紧急事故可自动进行通风机开启,同时在工作地点发出警示和风机状态显示。
9.3.5 通风系统的控制设置。
9.2 传感器和执行器
9.2.1 选择传感器的基本条件。
9.2.2 温度、湿度传感器设置的条件。
9.2.3 压力(压差)传感器设置的条件。
本条中第2款,当不处于同一标高时需对测量数值进行高度修正。
9.2.4 流量传感器设置的条件。
本条第2款中考虑到弯管流量计等不同要求,增加了“或其他安装条件”。推荐选用低阻产品,有利于水系统输送节能。
9.2.5 自动调节阀的选择。
1 为了调节系统正常工作,保证在负荷全部变化范围内的调节质量和稳定性,提高设备的利用率和经济性,正确选择调节阀的特性十分重要。
调节阀的选择原则,应以调节阀的工作流量特性即调节阀的放大系数来补偿对象放大系数的变化,以保证系统总开环放大系数不变,进而使系统达到较好的控制效果。但实际上由于影响对象特性的因素很多,用分析法难以求解,多数是通过经验法粗定,并以此来选用不同特性的调节阀。
此外,在系统中由于配管阻力的存在,阀权度S值的不同,调节阀的工作流量特性并不同于理想的流量特性。如理想线性流量特性,当S<0.3时,工作流量特性近似为快开特性,等百分比特性也畸变为接近线性特性,可调比显著减小,因此通常是不希望S<0.3的。而S值过高则可能导致通过阀门的水流速过高和/或水泵输送能耗增大,不利于设备安全和运行节能,因此管路设计时选取的S值一般不大于0.7。
2 关于水路两通阀流量特性的选择,由试验可知,空气加热器和空气冷却器的放大系数是随流量的增大而变小,而等百分比特性阀门的放大系数是随开度的加大而增大,同时由于水系统管道压力损失往往较大,S<0.6的情况居多,因而选用等百分比特性阀门具有较强的适应性。
关于三通阀的选择,总的原则是要求通过三通阀的总流量保持不变,抛物线特性的三通阀当S=0.3~0.5时,其总流量变化较小,在设计上一般常使三通阀的压力损失与热交换器和管道的总压力损失相同,即S=0.5,此时无论从总流量变化角度,还是从三通阀的工作流量特性补偿热交换器的静态特性考虑,均以抛物线特性的三通阀为宜,当系统压力损失较小,通过三通阀的压力损失较大时,亦可选用线性三通阀。
关于蒸汽两通阀的选择,如果蒸汽加热中的蒸汽作自由冷凝,那么加热器每小时所放出的热量等于蒸汽冷凝潜热和进入加热器蒸汽量的乘积。当通过加热器的空气量一定时,经推导可以证明,蒸汽加热器的静态特性是一条直线,但实际上蒸汽在加热器中不能实现自由冷凝,有一部分蒸汽冷凝后再冷却使加热器的实际特性有微量的弯曲,但这种弯曲可以忽略不计。从对象特性考虑可以选用线性调节阀,但根据配管状态当S<0.6时工作流量特性发生畸变,此时宜选用等百分比特性的阀。
3 调节阀的口径应根据使用对象要求的流通能力来定。口径选用过大或过小会导致满足不了调节质量或不经济。
9.2.6 三通阀和两通阀的应用。
由于三通混合阀和分流阀的内部结构不同,为了使流体沿流动方向使阀芯处于流开状态,阀的运行稳定,两者不能互为代用。但对于公称直径小于80mm的阀,由于不平衡力小,混合阀亦可用作分流。如果配套执行器能够提供上下双向驱动力,其他口径的混合阀亦可用作分流。
双座阀不易保证上下两阀芯同时关闭,因而泄漏量大。尤其用在高温场合,阀芯和阀座两种材料的膨胀系数不同,泄漏会更大。故规定蒸汽的流量控制用单座阀。
9.2.7 水路切换应选用通断阀。
在关断状态下,通断阀比调节阀的泄漏量小,更有利于设备运行安全和节能。
9.1 一般规定
9.1.1 应设置检测与监控的内容及条件。
1 关于检测与监控的内容。
参数检测:包括参数的就地检测及遥测两类。就地参数检测是现场运行人员管理运行设备或系统的依据;参数的遥测是监控或就地控制系统制定监控或控制策略的依据;
参数和设备状态显示:通过集中监控主机系统的显示或打印单元以及就地控制系统的光、声响等器件显示某一参数是否达到规定值或超差;或显示某一设备运行状态;
自动调节:使某些运行参数自动地保持规定值或按预定的规律变动;
自动控制:使系统中的设备及元件按规定的程序启停;
工况自动转换:指在多工况运行的系统中,根据节能及参数运行要求实时从某一运行工况转到另一运行工况;
设备连锁:使相关设备按某一指定程序顺序启停;
自动保护:指设备运行状况异常或某些参数超过允许值时,发出报警信号或使系统中某些设备及元件自动停止工作;
能量计量:包括计量系统的冷热量、水流量、能源消耗量及其累计值等,它是实现系统以优化方式运行,更好地进行能量管理的重要条件;
中央监控与管理:是指以微型计算机为基础的中央监控与管理系统,是在满足使用要求的前提下,按既考虑局部,更着重总体的节能原则,使各类设备在耗能低效率高状态下运行。中央监控与管理系统是一个包括管理功能、监视功能和实现总体运行优化的多功能系统。
检测与监控系统可采用就地仪表手动控制、就地仪表自动控制和计算机远程控制等多种方式。设计时究竟采用哪些检测与监控内容和方式,应根据系统节能目标、建筑物的功能和标准、系统的类型、运行时间和工艺对管理的要求等因素,经技术经济比较确定。
2 本规范所涉及的集中监控系统主要指集散型控制系统及全分散控制系统等。
所谓集散型控制系统是一种基于计算机的分布式控制系统,其特征是“集中管理,分散控制”。即以分布在现场所控设备或系统附近的多台计算机控制器(又称下位机)完成对设备或系统的实时检测、保护和控制任务,克服了计算机集中控制带来的危险性高度集中和常规仪表控制功能单一的局限性;由于采用了安装于中央监控室的具有通信、显示、打印及其丰富的管理软件的计算机系统,实行集中优化管理与控制,避免了常规仪表控制分散所造成的人机联系困难及无法统一管理的缺点。全分散控制系统是系统的末端,例如包括传感器、执行器等部件具有通信及智能功能,真正实现了点到点的连接,比集散型控制系统控制的灵活性更大,就中央主机部分设置、功能而言,全分散控制系统与集散型控制系统所要求的是完全相同的。
采用集中监控系统具有以下优势:
1)由于集中监控系统管理具有统一监控与管理功能的中央主机及其功能性强的管理软件,因而可减少运行维护工作量,提高管理水平;
2)由于集中监控系统能方便地实现下位机间或点到点通信连接,因而对于规模大、设备多、距离远的系统比常规控制更容易实现工况转换和调节;
3)由于集中监控系统所关心的不仅是设备的正常运行和维护,更着重于总体的运行状况和效率,因而更有利于合理利用能量实现系统的节能运行;
4)由于集中监控系统具有管理软件并实现与现场设备的通信,因而系统之间的连锁保护控制更便于实现,有利于防止事故,保证设备和系统运行安全可靠。
3 对于不适合采用集中监控系统的小型供暖、通风和空调系统,采用就地控制系统具有以下优势:
1)工艺或使用条件有一定要求的供暖、通风和空调系统,采用手动控制尽管可以满足运行要求,但维护管理困难,而采用就地控制不仅可提高了运行质量,也给维护管理带来了很大方便,因此本条文规定应设就地控制;
2)防止事故保证安全的自动控制,主要是指系统和设备的各类保护控制,如通风和空调系统中电加热器与通风机的连锁和无风断电保护等;
3)采用就地控制系统能根据室内外条件实时投入节能控制方式,因而有利于节能。
9.1.2 参数检测及仪表的设置原则。
参数检测的目的,是随时向操作人员提供设备和系统的运行状况和室内控制参数的情况以便进行必要的操作。反映设备和管道系统的安全和经济运行即节能的参数,应设置仪表进行检测。用于设备和系统主要性能计算和经济分析所需要的参数,有条件时也要设置仪表进行检测。
采用就地还是遥测仪表,应根据监控系统的内容和范围确定,宜综合考虑精简配置,减少不必要的重复设置。就地式仪表应设在便于观察的位置;若集中监控或就地控制系统基于实现监控目的所设置的遥测仪表具有就地显示环节且该测量值不参与就地控制时,则可不必再设就地检测仪表。
9.1.3 就地手动控制装置的设置。
为使动力设备安全运行及便于维修,采用集中监控系统时,应在动力设备附近的动力柜上设置就地手动控制装置及远程/就地转换开关,并要求能监视远程/就地转换开关状态。为保障检修人员安全,在开关状态为就地手动控制时,不能进行设备的远程启停控制。
9.1.4 连锁、联动等保护措施的设置。
1 采用集中监控系统时,设备联动、连锁等保护措施应直接通过监控系统的下位机的控制程序或点到点的连接实现,尤其联动、连锁分布在不同控制区域时优越性更大。
2 采用就地控制系统时,设备联动、连锁等保护措施应为就地控制系统的一部分或分开设置成两个独立的系统。
3 对于不采用集中监控与就地控制的系统,出于安全目的时,联动、连锁应独立设置。
9.1.5 锅炉房、换热机房和制冷机房应计量的项目。部分强制性条文。
一次能源/资源的消耗量均应计量。此外,在冷、热源进行耗电量计量有助于分析能耗构成,寻找节能途径,选择和采取节能措施。循环水泵耗电量不仅是冷热源系统能耗的一部分,而且也反映出输送系统的用能效率,对于额定功率较大的设备宜单独设置电计量。
9.1.6 中央级监控管理系统的设置要求。
指出了中央级监控管理系统应具有的基本操作功能。包括监视功能、显示功能、操作功能、控制功能、数据管理辅助功能、安全保障管理功能等。它是由监控系统的软件包实现的,各厂家的软件包虽然各有特点,但是软件包功能类似。实际工程中,由于没有按照条文中的要求去做,致使所安装的集中监控系统管理不善的例子屡见不鲜。例如,不设立安全机制,任何人都可进入修改程序的级别,就会造成系统运行故障;不定期统计系统的能量消耗并加以改进,就达不到节能的目标;不记录系统运行参数并保存,就缺少改进系统运行性能的依据等。
随着智能建筑技术的发展,主要以管理暖通空调系统为主的集中监控系统只是大厦弱电子系统之一。为了实现大厦各弱电子系统数据共享,就要求各子系统间(例如消防子系统、安全防范子系统等)有统一的通信平台,因而应考虑预留与统一的通信平台相连接的接口。
9.1.7 防排烟系统的检测与监控。
制定本条是为了暖通空调设计能够符合防火规范以及向消防监控设计提出正确的监控要求,使系统能正常运行。相关规范包括《建筑设计防火规范》GB 50016、《高层民用建筑设计防火规范》GB 50045。
与防排烟合用的空调通风系统(例如送风机兼作排烟补风机用,利用平时风道作为排烟风道时阀门的转换,火灾时气体灭火房间通风管道的隔绝等),平时风机运行一般由楼宇自控监控,火灾时设备、风阀等应立即转入火灾控制状态,由消防控制室监控。
要求风道上防火阀带位置反馈可用来监视防火阀工作状态,防止防火阀平时运行的非正常关闭及了解火灾时的阀位情况,以便及时准确地复位,以免影响空调通风系统的正常工作。通风系统干管上的防火阀如处于关闭状态,对通风系统影响较大且不易判断部位,因此宜监控防火阀的工作状态;当支管上的防火阀只影响个别房间时,例如宾馆客房的竖井排风或新风管道,垂直立管与水平支管交接处的防火阀只影响一个房间,是否设防火阀工作状态监视,则不作强行规定。防火阀工作状态首先在消防控制室显示,如有必要也可在楼宇中控室显示。
9.1.8 有特殊要求场所或系统的监控要求。
例如,锅炉房的检测与监控应遵守《锅炉房设计规范》GB 50041的规定,医院洁净手术部空调系统的监控应遵守《医院洁净手术部建筑技术规范》GB 50333的规定。
8.11 锅炉房及换热机房
8.11.1 换热机房设置及计量。
通过换热器间接供热的优点在于:①使区域热源系统独立于末端空调系统,利于其运营管理、不受末端空调系统运行状态干扰;②利于区域冷热源管网系统的水力平衡与水力稳定;③降低运行成本,如:系统补水量可以显著下降,即节约了水费也减少了水处理费用;④提高了系统的安全性与可靠性,因为末端系统的内部故障不影响区域系统的正常运行。
本条同时提出了关于锅炉房和换热机房应设置计量表具的要求。锅炉房、换热机房应设供热量、燃料消耗量、补水量、耗电量的计量表具,有条件时,循环水泵电量宜单独计量。
8.11.2 换热器选择要求。
1 对于“寸土寸金”的商业楼宇必须强调高效、紧凑,减少换热装置的占地面积。换热介质理化特性对换热器类型、构造、材质的确定至关重要,例如,高参数汽/水换热就不适合采用板式换热器,因为胶垫寿命短,二次费用高。地表水水源热泵系统的低温热源水往往C1–含量较高,而不锈钢对C1–敏感,此时换热器材质就不宜采用不锈钢。又如,当换热介质含有较大粒径杂质时,就应选择高通过性的流道形式与尺寸。
2 采用低温热源的热泵空调系统,只有小温差取热才能使热泵机组有相对较高的性能系数,选型数据分析表明,蒸发温度范围3℃~10℃时,平均1℃变化对性能系数的影响达3%~5%。
尽管理论上所有类型换热器均能实现低温差换热,但若采用壳管类换热器必然体积庞大,所以此种情况下应尽量考虑采用结构紧凑且易于实现小温差换热的板式换热器;设计师不能单从初投资的角度考虑换热器选型,而应兼顾运行管理成本及其对系统能效的影响。
8.11.3 换热器配置要求。
1 设计选型经验表明,几乎不会出现一个换热系统需要四台换热器的情况,所以规定了最多台数。过多的台数会增加初投资与运行成本,并对水系统的水力工况稳定带来不利影响。尽管换热器不大容易出故障,但并非万无一失,同时考虑到日常管理,所以规定了最少台数要求。
2 由于换热器实际工况条件与其选型工况有所偏离,如水质不佳造成实际污垢热阻大于换热器选型采用的污垢热阻;热泵系统水源水温度变化等都可能造成实际换热能力不足,所以应考虑安全余量。考虑到换热器实际工况与选型工况的偏离程度与系统类型有关,故给出了不同系统类型的换热器选型热负荷安全附加建议。其中对空调供冷,由于工况偏离程度往往较小,加之小温差换热时换热器投资高,故安全附加建议值较低。而对于水源热泵机组,因水质与水温往往具有不确定性,一旦换热能力不足还会影响热泵机组的正常运行,所以建议的安全附加值高些。当换热器的换热能力相对过盈时,有利于提升空调系统能效,特别是对从品位较低的热源取热的水源热泵系统更明显,尽管这会增加一些投资,但回收期通常不会多于5年~6年。
几大主要国外(或合资)品牌板式换热器选型计算的污垢热阻取值均参考美国TEMP标准,见下表。由于我国的许多实际工程的冷却水质与美国标准并不一致,如果直接采用,实际上会使得机组的性能无法达到要求,设计人员在具体工程中,应该充分注意此点。

由于迄今我们对诸如海水、中水以及城市污水等在换热表面产生的“软垢”的污垢热阻尚缺乏研究,此处建议取为0.129(m2·K)/kW,此数值等于国家标准规定的开式冷却水系统污垢热阻0.086(m2·K)/kW的1.5倍,当然也有学者建议取教科书中河水污垢热阻0.6(m2·K)/kW。
3 不同物业对热供应保障程度的要求不一,如:高档酒店,管理集团往往要求任何情况下热供应100%保障。而高保障,意味着高投资,所以强调与物业管理方沟通,确定合理的保障量。《锅炉房设计规范》GB 50041-2008第10.2.1条规定:当其中一台停止运行时,其余换热器的容量宜满足75%总计算热负荷的需求。该规范同时考虑了生产用热的保障性问题。对于民用建筑而言,计算分析表明:冷热供应量连续5小时低于设计冷热负荷的40%时,造成的室温下降,对于供暖:≤2℃;所以对于供冷:≤3℃。但考虑到严寒和寒冷地区当供暖严重不足时有可能导致人员的身体健康受到影响或者室内出现冻结的情况,因此依据气象条件分别规定了不同的保证率。以室外温度达到冬季设计温度、室内供暖设计温度18℃计算:在北京,如果保证65%的供热量,室内的平均温度约为8℃~9℃;在哈尔滨,如果保证70%的供热量,则室内平均温度为6℃左右。
对于供冷系统来说,由于供冷通常不涉及到安全性的问题(工艺特定要求除外),因此不用按照本条第3款的要求执行。对于供热来说,按照本条第3款选择计算出的换热器的单台能力如果大于按照第2款计算值的要求,表明换热器已经具备了一定的余额,因此就不用再乘附加系数。
8.11.4 换热器污垢清洗。
1 保证换热器清洁对提高系统能效作用明显。对于一、二次侧介质均为清水的换热器,常规的水处理与运行管理能保证换热器较长时间的高效运行。但是对水源水质不佳的热泵机组并非如此,如城市污水处理厂二级水。
2 以各类地表水为水源的水源热泵机组,常规的水处理与运行管理很难保证换热器较长时间的高效运行,或虽能实现,但代价极大,其主要原因是非循环水系统,水量大,水质差。而对水进行的化学处理,还存在“污染”水源水的风险。
3 实践表明,各类在线运行或非在线运行的免拆卸清洗系统,能保证水质“恶劣”时换热器较长时间的高效运行,此类清洗装置包括:用于壳管式换热器的胶球和毛刷清洗系统,能在不中断换热器运行情况下,实现对换热表面的连续清洁;用于板式换热器的免拆卸清洗系统,无需拆卸换热器,只需很少时间,就能实现换热器清洗。
8.11.5 非清水换热介质的换热器要求。
非清水介质主要指:城市污水及江河湖海等地表水。此类水源不可避免地会在换热器表面形成“软垢”,而且“软垢”还可能具有生物活性,因此需要定期打开清洗。为便于换热器清洗并降低清洗操作对站房环境的影响,要求将换热器设在独立房间内。
由于清洁工作相对频繁,给排水清洗设施的设置是为了系统清洁的方便;通风措施的设置主要为了保证室内的空气环境。
8.11.6 汽水换热器蒸汽凝结水回收利用。
蒸汽凝结水仍然具有较高的温度和应用价值。在一些地区(尤其是建设有区域蒸汽管网),由于凝结水回收的系统较大,一些工程常常将凝结水直接放掉,这一方面浪费了宝贵的高品质水资源(软化水),另一方面也浪费了热量,并且将凝结水直接排到下水道还存在其他方面的问题。因此本条文提出了回收利用的规定。
回收利用有两层含义:①回到锅炉房的凝结水箱;②作为某些系统(例如生活热水系统)的预热在换热机房就地换热后再回到锅炉房。后者不但可以降低凝结水的温度,而且充分利用了热量。
8.11.7 锅炉房设置其他要求。
本规范有关锅炉房的设计规定仅适用于设在单体建筑内的非燃煤整装式锅炉。因此必须指出的是:本规范关于锅炉房的规定仅涉及锅炉类型的选择、容量配置等关于热源方案的要求,而有关锅炉房具体设计要求必须符合相关规范和政府主管部门的管理要求。
8.11.8 锅炉房及单台锅炉的设计容量与锅炉台数要求。
1 这里提出的综合最大热负荷与《锅炉房设计规范》GB 50041-2008第3.0.7条的概念相似,综合最大热负荷确定时应考虑各种性质的负荷峰值所出现的时间,或考虑同时使用系数。强调以其作为确定锅炉房容量的热负荷,是因为设计实践中往往将围护结构热负荷、新风热负荷与生活热负荷的最大值之和作为确定锅炉房容量的热负荷,与综合最大热负荷相比通常会高20%~40%,造成锅炉房容量过大,既加大了投资又可能增加运行能耗。
2 供暖及空调热负荷计算中,通常不计入灯光设备等得热,而将其作为热负荷的安全余量。但灯光设备等得热远大于管道热损失,所以确定锅炉房容量时无需计入管道热损失。
3 锅炉低负荷运行时,热效率会有所下降,如果能使锅炉的额定容量与长期运行的实际负荷输出接近,会得到较高的季节热效率。作为综合建筑的热源往往会长时间在很低的负荷率下运行,由此基于长期热效率原则确定单台锅炉容量很重要,不能简单的等容量选型。但保证长期热效率的前提下,又以等容量选型最佳,因为这样投资节约、系统简洁、互备性好。
4 关于一台锅炉故障时剩余供热量的规定,理由同8.11.3条第2款的说明。
8.11.9 锅炉介质要求。
与蒸汽相比热水作为供热介质的优点早已被实践证明,所以强调尽量以水为锅炉供热介质的理念。但当蒸汽热负荷比例大,而总热负荷又不很大时,分设蒸汽供热与热水供热系统,往往系统复杂,投资偏高,锅炉选型困难,而且节能效果有限,所以此时统一供热介质,技术经济上往往更合理。
8.11.10 锅炉额定热效率要求。
1 条文中的锅炉热效率为燃料低位发热量热效率。
2 20世纪70年代以来,西欧和美国等相继研制了冷凝式锅炉,即在传统锅炉的基础上加设冷凝式热交换受热面,将排烟温度降到40℃~50℃,使烟气中的水蒸气冷凝下来并释放潜热,可以使热效率提高到100%以上(以低位发热量计算),通常比非冷凝式锅炉的热效率至少提高10%~12%。燃料为天然气时,烟气的露点温度一般在55℃左右,所以当系统回水温度低于50℃,采用冷凝式锅炉可实现节能。
8.11.11 真空热水锅炉使用要求。
真空热水锅炉近年来应用的越来越广泛,而且因其极佳的安全性、承压供热的特点非常适合作为建筑物热源。真空热水锅炉的主要优点为:负压运行无爆炸危险;由于热容量小,升温时间短,所以启停热损失较低,实际热效率高;本体换热,既实现了供热系统的承压运行,又避免了换热器散热损失与水泵功耗;与“锅炉+换热器”的间接供热系统相比,投资与占地面积均有较大节省;闭式运行,锅炉本体寿命长。
强调最高用热温度≤85℃,是因为真空锅炉安全稳定的最高供热温度为85℃。
8.11.12 变流量系统控制。
对于变流量系统,采用变速调节,能够更多的节省输送能耗,水泵变频调速技术是目前比较成熟可靠的节能方式,容易实现且节能潜力大,调速水泵的性能曲线宜为陡降型。
8.11.13 供热系统耗电输热比。
公式(8.11.13)根据《严寒和寒冷地区居住建筑节能设计标准》JGJ 26-2010第5.2.16条的计算公式EHR=N/Q·η≤A×(20.4+α·ΣL)/△t整理得出。式中,电机和传动部分效率取平均值η=0.88;水泵在设计工况点的轴功率为N=0.002725G·H/η0;计算系数A和B的意义见本规范第8.5.12条条文说明。
循环水泵的耗电输热比的计算方法考虑到了不同管道长度、不同供回水温差因素对系统阻力的影响,计算出的EHR限值也不同,即同样系统的评价标准一致。
8.11.14 锅炉房及换热机房供热量控制。强制性条文。
本条文对锅炉房及换热机房的节能控制提出了明确的要求。供热量控制装置的主要目的是对供热系统进行总体调节,使供水水温或流量等参数在保持室内温度的前提下,随室外空气温度的变化随时进行调整,始终保持锅炉房或换热机房的供热量与建筑物的需热量基本一致,实现按需供热;达到最佳的运行效率和最稳定的供热质量。
气候补偿器是供暖热源常用的供热量控制装置,设置气候补偿器后,还可以通过在时间控制器上设定不同时间段的不同室温,节省供热量;合理地匹配供水流量和供水温度,节省水泵电耗,保证散热器恒温阀等调节设备正常工作;还能够控制一次水回水温度,防止回水温度过低减少锅炉寿命。
由于不同企业生产的气候补偿器的功能和控制方法不完全相同,但必须具有能根据室外空气温度变化自动改变用户侧供(回)水温度、对热媒进行质调节的基本功能。
8.9 燃气冷热电三联供
8.9.1 使用原则。
本规范提到的燃气冷热电三联供是指适用于楼宇或小区级的分布式冷热电三联供系统,不包括城市级大型燃气冷热电三联供系统。系统配置形式与特点见下表。

8.9.2 设备配置及系统设计原则。
1 采用以冷、热负荷来确定发电容量(以热定电)的方式,对于整个建筑来说具有很好的经济效益。这里提到的冷、热负荷不是指设计冷、热负荷,而应根据经济技术比较后,选取相对稳定的基础冷、热负荷。
2 采用本建筑用电优先的原则,是为了充分利用发电机组的能力。由于在此过程中能量得到了梯级利用,因此也具有较好的节能效益和经济效益。
8.9.3 余热利用设备和容量选择。
1 余热的利用可分为直接利用和间接利用两种。由于间接利用通常都需要设置中间换热器,存在能源品位的损失。因此推荐采用余热直接利用的方式。
2 为了使得在发电过程中产生的余热得到充分利用,规定了余热利用设备的最小制冷量要求。
8.8 区域供冷
8.8.1 冷源选择。
能源的梯级利用是区域供冷系统中最合理的方式之一,应优先考虑。
8.8.2 空调冷水供回水温差。
由于区域供冷的管网距离长,水泵扬程高,因此加大供回水温差,可减少水流量,减少水泵的能耗。由于受到不同类型机组冷水供回水温差限制,不同供冷方式宜采用不同的冷水供回水温差。
经研究表明:在空调末端不变的情况下,冷水采用5℃/13℃和7℃/12℃的供回水温度,末端设备对空气的处理能力基本上相同。由于区域供冷系统中宜采用用户间接连接的接入方式,当一次水采用9℃温差时,供水温度要求在3℃~4℃,这样可以使得二次水的供水温度达到6℃~7℃,通常情况下能够满足用户的水温要求。
8.8.3 区域供冷站设计要求。
1 设计采用区域供冷方式时,应进行各建筑和区域的逐时冷负荷分析计算。制冷机组的总装机容量应按照整个区域的最大逐时冷负荷需求,并考虑各建筑或区域的同时使用系数后确定。这一点与建筑内确定冷水机组装机容量的理由是相同的,做出此规定的目的是防止装机容量过大。
2 由于区域供冷系统涉及的建筑或区域较大,一次建设全部完成和投入运行的情况不多。因此在站房设计中,需要考虑分期建设问题。通常是一些固定部分,如机房土建、管网等需要一次建设到位,但冷水机组、水泵等设备可以采用位置预留的方式。
3 对站房位置的要求与对建筑内部的制冷站位置的要求在原则上是一致的。主要目的是希望减少冷水输送距离,降低输送能耗。一般情况供冷半径不宜大于1500m。
4 区域供冷站房设备容量大、数量多,依靠传统的人工管理难以实现满足用户空调要求的同时,运行又节能的目标。因此这里强调了采用自动控制系统及能源管理优化系统的要求。
8.8.4 区域供冷管网设计要求。
1 各管段最大设计流量值的确定原则,与冷水机组的装机容量的确定原则是一致的。这样要求的目的是为了降低管道尺寸、减少管道投资。在这一原则的基础上,必然要求整个管网系统按照变流量系统的要求来设计。
2 由于区域供冷系统规模大、存水量多、影响面大,因此从使用安全可靠的角度来看,区域供冷系统与各建筑的水系统一般采用间接连接的方式,这样可以消除由于局部出现问题而对整个系统共同影响。如果系统比较小,且膨胀水箱位置高于所有管道和末端(或者系统的定压装置可以满足要求)时,也可以采用空调冷水直供系统,这样可以减少由于换热器带来的温度损失和水泵扬程损失,对节能有一定的好处。
3 由于系统大、水泵的装机容量大,因此确定合理的管道流速并保证各环路之间的水力平衡,是区域供冷能否做到节能运行的关键环节之一,必须引起设计人员的高度重视。通常来说,管网内的水流速超过3m/s之后,会对管道和附件的使用寿命产生一定的影响;同时考虑到区域供冷系统中,最大流量出现的时间是非常短的,因此本条规定最大设计流速不宜超过2.9m/s。当然,这主要是针对较大的管径而言的,还需要管径和比摩阻的问题,综合确定。
4 由于管网比较长,会导致管道的传热损失增加,因此对管道的保温要求也做了整体性的性能规定。
5 为了提倡用户的行为节能,本条文规定了冷量计量的要求。
8.7 蓄冷与蓄热
8.7.1 蓄冷(热)系统选择。
蓄冷、蓄热系统能够对电网起到“削峰填谷”的作用,对于电力系统来说,具有较好的节能效果,在设计中可以适当的推荐采用。本节主要介绍系统设计时的原则性要求,蓄冷空调系统的具体要求应符合《蓄冷空调工程技术规程》JGJ 158的规定。
1 对于执行分时电价且峰谷电价差较大的地区来说,采用蓄冷、蓄热系统能够提高用户的经济效益,减少运行费用。
2 空调负荷的高峰与电力负荷的峰值时段比较接近时,如果采用蓄冷、蓄热系统,可以使得冷、热源设备的电气安装容量下降,在非峰值时段可以运行较多的设备进行蓄热蓄冷。
3 在空调负荷峰谷差悬殊的情况下,如果按照峰值设置冷、热源的容量并直接供应空调冷、热水,可能造成在一天甚至全年绝大部分时间段冷水机组都处于较低负荷运行的情况,既不利于节能,也使得设备的投入没有得到充分的利用。因此经济分析合理时,也宜采用蓄冷、蓄热系统。
4 当电力安装容量受到限制时,通过设置蓄冷、蓄热系统,可以使得在负荷高峰时段用冷、热源设备与蓄冷、蓄热系统联合运行的方式而达到要求的峰值负荷。
5 对于改造或扩建工程,由于需要的设备机房面积或者电力增容受到限制时,采用蓄冷(热)是一种有效提高峰值冷热供应需求的措施。
6 一般来说,采用常规的冷水温度(7℃/12℃)且空调机组合理的盘管配置(原则上最多在10~12排,排数过多的既不经济,也增加了对风机风压的要求)合理时,最低能达到的送风温度大约在11℃~12℃。对于要求更低送风温度的空调系统,需要较低的冷水温度,因此宜采用冰蓄冷系统。
7 区域供冷系统,应采用较大的冷水供回水温差以节省输送能耗。由于冰蓄冷系统具有出水温度较低的特点,因此满足于大温差供回水的需求。
8 对于某些特定的建筑(例如数据中心等),城市电网的停电可能会对空调系统产生严重的影响时,需要设置应急的冷源(或热源),这时可采用蓄冷(热)系统作为应急的措施来实现。
8.7.2 蓄冷空调系统负荷计算和蓄冷方式选择。
1 对于一般的酒店、办公等建筑来说,典型设计蓄冷时段通常为一个典型设计日。对于全年非每天使用(或即使每天使用但使用人数并不总是满员的建筑,例如展览馆、博物馆以及具有季节性度假性质的酒店等),其满负荷使用的情况具有阶段性,这时应根据实际满员使用的阶段性周期作为典型设计蓄冷时段来进行。
由于蓄冷系统存在间歇运行的特点,空调系统不运行的时段内,建筑构件(主要包括楼板、内墙及家具)仍然有传热而形成了一定的蓄热量,这些蓄热量需要整个空调系统来带走。因此在计算整个空调蓄冷系统典型设计日的总冷量(kWh)时,除计算空调系统运行时段的冷负荷外,还应考虑上述蓄热量。蓄冷空调系统非运行时段的各建筑构件单位楼板面积、单位昼夜温差(由自然温升引起的)附加负荷可参考表12。
2 对于用冷时间短,并且在用电高峰时段需冷量相对较大的系统,可采用全负荷蓄冷;一般工程建议采用部分负荷蓄冷。在设计蓄冷-释冷周期内采用部分负荷的蓄冷空调系统,应考虑其在负荷较小时能够以全负荷蓄冷方式运行。

在有条件的情况下,还宜进行全年(供冷季)的逐时空调冷负荷计算或供热季节的全年负荷计算,这样才能更好地确定系统的全年运行策略。
在确定全年运行策略时,充分利用低谷电价,一方面能够节省运行费用,另一方面,也为城市电网“削峰填谷”取得较好效果。
8.7.3 冰蓄冷装置蓄冷和释冷特性要求。
1 冰蓄冷装置的蓄冷特性要求如下:
1)在电网的低谷时间段内(通常为7小时~9小时),完成全部设计冷量的蓄存。因此应能提供出的两个必要条件是:①确定制冷机在制冷工况下的最低运行温度(一般为-4℃~-8℃)②根据最低运行温度及保证制冷机安全运行的原则,确定载冷剂的浓度(体积浓度一般为25%~30%)。
2)结冰厚度与结冰速度应均匀。
2 冰蓄冷装置的释冷特性要求如下:
对于用户及设计单位来说,冰蓄冷装置的释冷特性是非常重要的,保持冷水温度恒定和确保逐时释冷量符合建筑空调的需求是空调系统运行的前提。所以,冰蓄冷装置的完整释冷特性曲线中,应能明确给出装置的逐时可释出的冷量(常用释冷速率来表示和计算)及其相应的溶液浓度。
对于释冷速率,通常有两种定义法:
1)单位时间可释出的冷量与冰蓄冷装置的名义总蓄冷量的比值,以百分比表示(一般冰盘管式装置,均按此种方法给出);
2)某单位时间释出的冷量与该时刻冰蓄冷装置内实际蓄存的冷量的比值,以百分比表示(一般封装式装置,均按此种方法给出)。
全负荷蓄冰系统初投资最大,占地面积大,但运行费最节省。部分负荷蓄冰系统则既减少了装机容量,又有一定蓄能效果,相应减少了运行费用。附录J中所指一般空调系统运行周期为一天24小时,实际工程(如教堂),使用周期可能是一周或其他。
一般产品规格和工程说明书中,常用蓄冷量量纲为(RT·h)冷吨时,它与标准量纲的关系为:1RT·h=3.517kWh。
8.7.4 基载机组配置条件。
基载冷负荷如果比较大或者基载负荷下的总冷量比较大时,为了满足制冰蓄冷运行时段的空调要求,并确保制冰蓄冷系统的正常运行,通常宜设置单独的基载机组。比较典型的建筑是酒店类建筑。
基载冷负荷如果不大,或者基载负荷下的总冷量不大,单独设置基载机组,可能导致系统复杂和投资增加,因此这种情况下,也可不设置基载冷水机组,而是根据系统供冷的要求设置单独的取冷水泵(在蓄冷的同时进行部分取冷)。需要注意的是:在这种情况下,同样应保证在蓄冷时段的蓄冷量满足8.7.3条的要求。
8.7.5 载冷剂选择及管路设计要求。
蓄冰系统中常用的载冷剂是乙烯乙二醇水溶液,其浓度愈大凝固点愈低(见表13)。一般制冰出液温度为-6℃~-7℃,蓄冰需要其蒸发温度为-10℃~-11℃,故希望乙烯乙二醇水溶液的凝固温度在-11℃~-14℃之间。所以常选用乙烯乙二醇水溶液体积浓度为25%左右。

8.7.6 冰蓄冷系统的冷水供回水温度和温差要求。
采用蓄冰空调系统时,由于能够提供比较低的供水温度,应加大冷水供回水温差,节省冷水输送能耗。
从空调系统的末端情况来看,在末端一定的条件下,供回水温差的大小主要取决于供水温度的高低。在蓄冰空调系统中,由于系统形式、蓄冰装置等的不同,供水温度也会存在一定的区别,因此设计中要根据不同情况来确定。
当空调系统的冷水设计温差超过本条第1、2款的规定时,宜采用串联式蓄冰系统。
因此设计中要根据不同情况来确定空调冷水供水温度。除了本条文中提到的冰盘管外,目前还有其他一些蓄冷或取冷的方式,如:动态冰片滑落式、封装式以及共晶盐等,各种方式常用冷水温度范围可参考表14(为了方便,表中也列出了采用水蓄冷时的供水温度)。

8.7.7 水蓄冷(热)系统设计。部分强制性条文。
1 为防止蒸发器内水的冻结,一般制冷机出水温度不宜低于4℃,而且4℃水相对密度最大,便于利用温度分层蓄存。适当加大供回水温差还可以减少蓄冷水池容量,通常可利用温差为6℃~7℃,特殊情况利用温差可达8℃~10℃。考虑到水力分层时需要一定的水池深度,提出相应要求。在确定深度时,还应考虑水池中冷热掺混热损失,条件允许应尽可能深。开式蓄热的水池,蓄热温度应低于95℃,以免汽化。
2 采用板式换热器间接供冷,无论系统运行与否,整个管道系统都处于充水状态,管道使用寿命长,且无倒灌危险。当采用直接供冷方式时,管路设计一定要配合自动控制,防止水倒灌和管内出现真空(尤其对蓄热水系统)。当系统高度超过水池设计水面10m时,采用水池直接向末端设备供冷、热水会导致水泵扬程增加过多使输送能耗加大,因此这时应采用设置热交换器的闭式系统。
3 使用专用消防水池需要得到消防部门的认可。
4 热水不能用于消防,故禁止与消防水池合用。